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I. INTRODUCTION

A, THE CONCEPT

The Gea Dragon concept has been developed assuming that
space transportation economy will result if launch vehicles are used
that are very large, simple, and reusable, even if payload-to-liftoff
weight ratio is sacrificed in securing these characteristics. Prior
studies led to the embogiment of this concept in a vehicle as large as
a ship, which used a single press;re—fed engine per stage (Figure I-A-1),
and which was assembled and transported using shipbuilding methods.
The rocket was to be launched from a vertical floating attitude
directly out of the water. After burnout, the stages were to be
deceierated solely by normal atmospheric drag and water impact forces.
The recovered stages were to be towed back to thellaunch site for
reuse (Figure I-A-2). The seaborne operating concept was extended to

include propulsion system development testing at sea using cruiser-

weight, vehicle configuration tankage for full-scale work.
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I, Introduction (cont.)

B. THE S5TUDY PURPOSE

The purpose of the present study was to examine the fore-
going concept in sufficient detail to determine its technical feasibility

and to make a reasonably accurate estimate of its cost effectiveness.

C. THE GROUND RULES

To give the analysis a specific character, the following

mission was defined:

Transport from the surface of the sea near Cape
Canaveral, to a 306-nm orbit, unit payloads weighing at

least one million 1b at rates of one per month and two per
month.

Minimum cost was to be of paramount consideration, although
operation in the 1970 time period was desited. For cost purposes, a
10-yr useful life for the system was to.be assumed. No arbitrary
restrictions were to be placed on takeoff weight. Payloads were not

defined except that versatility was desired.
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I, Introduction (cont.)

D. THE GENERAL STUDY RESULTS

In general, the study has confirmed that large, simple,
recoverable vehicles can be highly effective from a cost standpoint.
A total system development cost of $32.836 billion is forecast. The
direct flight related cost is $10 to $20 per 1b of payload. Amortizing
the research and development cost over 240 flights gives a total cost
effectiveness of $20 to $30 per 1lb of payload. No elements of the
original concept have been shown to be technically unfeasible; how-
ever, the technical feasibility of a completely passive recovery

system has not been demonstrated.

At the end of the study period, it appeared that a config-
uration having a sufficiently high drag to impact at a velocity
acceptable from a structural point of view would suffer an unacceptable
payload penalty. To ensure a completely workable system, an inflatable
'"drag bag'" has been incorporated in the configuration discussed here.
Further tradeoff studies may permit a return to the completely passive

approach.

Page I-3
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I, D, The General Study Results (cont.)

The question remains as to whether the inertial effect of
the water in the first-stage thrust chamber leads to unacceptably long
start transients. Several solutions appear possible, however, if the

problem is found to exist.
The several unusual features of the Sea Dragon concept have
lead to major questions that will be discussed in summary here and in

greater detail in the remainder of this volume and in Volumes II and III.

1. Size Effects

The Sea Dragon vehicle is more than ‘500 ft long and
75 ft in diameter. Its size has led to séme questions of development,
fabrication, and handling feasibility. The study has indicated that
reasonable solutions to these problems can be obtained. Of primary
concern were the problems of transporting and handling a vehicle of
this size. The sea transport mode has solved most of these problems,
but has been responsible for creating a féw more. Numerous existing

drydocks will accomodate a completely assembled vehicle, or two like
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I, D, The General Study Results (cont.)

stages. One shipyard, the Maritime Administration's Pidgeon Point
yard, has five adequate drydocks with handling equipment and supporting
‘ shops. The entire yard can be leased for only a few hundred thousand

dollars a year.

Opinions were solicitated from several shipyards
regarding feasibility of fabricating and assembling the Sea Dragon
tankage. Replies were uniformly affirmative regarding feasibility.
The average tankage cost quoted was $6 per 1b. A number of shipyards
are beginning to gain experience in missile fabrication through parti-
cipation in the large solid rocket program. The quoted costs from
yardé having familiarity with the material and tolerance requirements

s

for large solid cases did not differ markedly from the cost estimates

of the less experienced yards.
The large size of the first-stage thrust chamber

(80-million-1b thrust) has raised questions regarding development

cost and combustion stability.

Page I-5
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I, D, The General Study Results (cont.)

The cost analysis has shown that even with very
generous propellant allowances the propellant cost is only about 15%
of the total research and development cost. The sea development testing
approach keceps the facility costs actually below those required for

smaller engines such as the F-1 and bNi-1.

The cost of test hardware increases with size, but
not at a prohibitive rate. Thrust chambers, the primary casualty items,
are expected to cost about $4.5 million cach. Repair and modification
of injectors, and replacement of burned out tubes is expected to be
more feasible and have greater economic justification than in the case
of smaller engines. These factors lead to a quite reasonable cost for

test hardware, in spite of the size.

The labor cost for each test is less than that for
smaller pump-fed engines. The reason is that the increase in personnel
required to handle the larger hardware is more than offset by the
decrease in the number of people required to collect, reduce, and

interpret the lesser amount of test data required by the simpler engine.
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I, D, The General Study Results (cont.)

With regard to combustion stability, an analysis on
the basis of sensitive time lag theory (perhaps the best theory so far
developed) indicates that the Sea Dragon thrust chamber will operate
well outside the region of combustion instability. One of the primary
advantages of sca based development testing is that it permits early
experimental evaluation of combustion stability on a full scale basis

without an exorbitant outlay for facilities.

Thus, the sea handling philosophy provides reasonable

solutions to most of the problems generated by large vehicle and engine

size. The problems it creates are discussed below.

2. Sea Effects

Immersion of the vehicle in sea water during a signif-
icant number of operating phases gives rise to several problems not
previously encountered to the same degree in space vehicle development
and operation. Sea water is corrosive to many materials and has high

electrical and thermal conductivity. Water has a higher freezing point
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I, D, The General Study Results (cont.)

H
than air. Access to wetted portions is denied except to divers.
External pressures are greater than atmospheric pressures and increase
more rapidly with depth than does that of the atmosphere. Water has

a higher density than air, and provides a less rigid support than soil.

Some of the obvious problems have equally obvious

solutions.

The solution to the corrosion problem lies in ex-
cluding the water from compartments containing equipment that can be
injured by it or by providing protection for the individual items.

This is the procedure used in warships, which contain at least as much
complex equipment as will be used in space launchr vehicles. The primary
corrodable materials that could be in contact with sea water will be
stainless steel in the thrust chambers, aluminum tank skin, and high
nickel steel interstage structure. The aluminum tanks are protected

by their insulation covering. The nickel steel will be protected by
painting, but the stainless steel has adequate corrosion resistance

without protection.
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I, D, The General Study Results (cont.)

Electrical equipment, in general, is located inside
the waterproof skin. A few items such as gimbal actuator servos are

individually waterproofed and have waterproof conduits for related

wiring.

The icing problem is met by a few inches of insula-
tion. In vehicles the size of the Sea Dragon, the weight penalty is
not too significant (1% Stage I inerts, 5% Stage II inerts). Thermal

barriers in the form of insulating gaskets and gas pockets prevent

formation of ice at the propellant-water interface in the plumbing.

In the unfueled condition, access is denied by the
water to only a small part of the skin. Internal access in this state
is relatively unhampered by the water environment. 1In the fully
serviced condition approximately half of the external skin is wetted.
Erected, two-thirds of the vehicle is under water, but relatively few

components are below the waterline.
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I, D, The General Study Results (cont.)
The water density, and the external pressures result-
ing from this density, present potentially more serious problems. The

external pressure of nearly 150 psi at the first-stage engine level
could cause collapse of the De Laval nozzle. Separation effects under
water are unknown. If early gas separation takes place, the nozzle
may not be subjected to an excessive pressure differential. The
solution adopted in this study, however, is to use a nozzle insert
that partially restricts the nozzle exit and maintains internal pres-
sure greater than external pressure. Other possibilities include use

of separation inducers, nozzle ventilating slots, and plug nozzles.

The large inertia of the water contained in the
nozzle leads to starting transients of three seconds. Whether this
long transient is objectionable or favorable is not known at present.

Further analysis and tests are needed.

Page I-10
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I, D, The General Study Results (cont.)

The type of support given by the water leads to
various kinds of loading depending on the conditions of wind and sea
and on the loading condition of the vehicle. The analysis has shown
that loads up to Sea State No. 5 do not require structural reinforce-
ment of the vehicle except for removable booms to support the ballast

unit.

The constant motion of the vehicle requires some
modifications in guidance, primarily in the provision of self-erecting
and gyrocompass azimuth alignment capability together with initial

position and velocity inputs from shore based tracking stations.

Although it is proposed that most of the checkout
and the fuel servicing be done in a lagoon at Cape Canaveral, certain
vehicle and payload functions must be commanded and monitored con-
tinuously up to the instant of launch. The simplification of the

vehicle reduces the number of these functions, and the increased
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I, D, The General Study Results (cont.)

difficulty of such monitoring will tend to reduce the number to those
absolutely essential. Those that remain must be monitored by the
flight crew on the service vessel and from telemetry signals received
at the launch control center. Further study of the countdown is
required to identify each item to be monitored and the manner in which

the information or command will be handled.
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I, D, The General Study Results (cont.)

3. Simplicity Effects

The most usual restriction to simplicity is reduction
in performance, usually resulting in an inferior payload to gross weight
ratio. In the Sea Dragon, simplicity is gained through two prime fea-

tures; pressure-fed engines and a single thrust chamber for each stage.

Pressure-fed propulsion generally leads to inferior
propellant fractions because the tank pressure must always exceed the
combustion pressure. The Sea Dragon achieves a propellant fraction of
about .89 in each stage. The lower propellant density of the second
stage is counterbalanced by a reduction in tank pressure. This lower
pressure is made possible, without loss of specific impulse, by use of
an expandable nozzle. The latter makes possible a high area ratio with-
out having the nozzle exit diameter exceed the diameter of the first-

stage tanks.
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I, D, The General Study Results (cont.)

Pump-fed engines might be expected to give propellant
fractions of .95 with dense (LO, - RP-1) propellants or .93 with LHj
and LO,. Caution is indicated here, however, because hydrostatic
pressures, and the pressures required to counteract payload and upper
stage loads tend to become large in vehicles the size of Sea Dragon and
may lead to pump-fed stages that are only marginally superior in terms

of propellant fraction.

In addition to an inferior mass fraction, pressure-
fed engines tend to have lower specific impulse because of lower optimum
chamber pressure. The Sea Dragon has a specific impulse at sea level
of only 242 sec. It should be noted, however, that sea level specific
impulse is weighted only one-tenth to one-third of the vacuum value,
depending on the trajectory. The vacuum specific impulse depends almost

entirely on area ratio and is nearly independent of chamber pressure.

The combined effect of the lower specific impulse

and mass fraction is to reduce the payload to gross weight ratio of the

Sea Dragon to about one-fortieth. The development cost, however, is
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I, D, The General Study Results (cont.)

estimated (based on experience with smaller engines) to be one-half to
one-third that of a pump-fed engine of equal thrust and reliability.
Furthermore, a great improvement in general operability and recoverability
results. Viewed from another angle, because of its lower development

and operating costs, a pressurized vehicle several times larger than the
pump-fed variety can be developed and operated for the same cost. This
larger vehicle will carry more payload than the smaller and more efficient

one.

As a result of the pressure-fed propulsion system, the
vehicle is extremely rugged. The loads generated by the feed pressure
are large compared with both handling and flight loads. Because the
feed pressures are well known, structural adequacy is more easily estab-
lished. A reduction in vehicle cost results when compared with fragile
tankage systems where relatively unknown flight and handling loads may

well govern the design.
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I, D, The General Study Results (cont.)

The pressure-fed system also lends itself well to
recovery because it has sufficient strength to resist breakup on atmo-

spheric and high speed water entry.

4. Recovery

;The ability of the pressure-fed stage to survive intact
water impact velocities between 300 and 600 ft/sec, combined with a sea-
going design that will survive immersion without requiring extensive
refurbishment, makes a simple drag type recovery system most attractive.
Without auxiliary drag devices, the impact velocity of the Sea Dragon
first stage is supprsonic. It is fairly certain that the current design
will not survive such an impact without damage. It is possible that a
redesign, incorporating a different nose shape, a larger nozzle area
ratio, structural strengthening in key spots, and some repressurizing
of the forward tank, would result in a vehicle capable of withstanding

its normal impact. Because definitive feasibility could not be shown
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I, D, The General Study Results (cont.)

in the time available, it was decided to incorporate an inflatable drag
skirt. This drag skirt reduces the impact velocity below 300 ft/sec,
low enough to prevent damage to the structure as designed. The weight

penalty of the drag skirt is less than 2% in payload.

The 2% payload penalty, a negligible cost to tow the
stage 170 mi back to base, and a 4% refurbishment cost are the only costs

of recovering a stage that costs $24 million to duplicate.

In addition to the value of the recovered stage, such
stages are expected to be more reliable on subsequent flights than new
stages, corresponding to aircraft experience. Furthermore, recovery
of stages in the development period will assist in design evaluation by

permitting direct post-flight inspection.

Because of limitations on time and funds, recovery of
the second stage was not investigated. Further considerable cost reduc-
tion should be possible by recovering these stages in a manner somewhat

similiar to first-stage recovery.
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I, D, The General Study Results (cont.)

Each of the principal features of the Sea Dragon

contributes significantly to the overall cost effectiveness. None

appears to introduce difficulties out of proportion to its contribution.
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Figure I-A-1

Cut-Away View of the Sea Dragon
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IT. VEHICLE DESCRIPTION

A. GENERAL FEATURES AND FUNCTION

The Sea Dragon is a very large sea-launched two-stage
liquid propellant rocket vehicle that will be used to launch very large
payloads into earth orbit. As presently designed, the vehicle has a
gross liftoff weight of 40-million 1lb and is capable of propelling a
payload of 1,100,000 1b to a circular orbit of 306-nm altitude. The
payload was assumed to be liquid hydrogen for this study, but it could
be other material or equipment, or additional propulsion stages. A
command module of the Apollo type provides the guidance and control and
communication functions, and will be capable of separation, re-entry,

and recovery as well as abort functions.

The vehicle is nominally 75 ft in diameter and 500 ft long.
The general configuration is presented in Figures II-A-1 and II-A-2.
Principle characteristics of the vehicle are given in Tables II-A-1,

II-A-2, and II-A-3.
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11, A, General Features and Function (cont.)

The major components of the vehicle, such as the first-stage,
second -stage, and payload will be towed separately by sea to the
assembly lagoon where they will be assembled in the horizontal position.
Small components that might be better transported by land or air will
be installed and checked out at the assembly site. The vehicle will be
capable of being serviced and operated in moderately heavy seas in a
free floating position. To achieQe proper flotation and stability
characteristics during towing and‘while in the vertical prelaunch
attitude, the vehicle will be equipped with a ballast unit attached to
the first-stage nozzle rim. During the launch sequence, the ballast

unit is released and later taken in tow for reuse.

The first-stage of the vehicle is recoverable and
reusable. After staging, the first-stage re-entry flight is passively
controlled by an inflated drég skirt that limits its velocity at waterxr
impact so that the structure is not damaged. The stage can be
recovered and reused wifh minimal refurbishment. Figure II-A-3 shows

the details of the vehicle.
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II, A, General Features and Function (cont.)

Each stage uses a simple pressure-fed propellant supply
system. The propellant tank walls are correspondingly stronger than
would be used in a pump-fed stage. These propellant tank walls form
the primary stage structure. Interstage structure transfers the load-
ing between stages and the transition structure provides the primary
load path between the first-stage interstage structure and the second-
stage tank. The main vehicle structure consists of the stage tank
structure, the payload tank structure, the interstage, and the transi-
tion structure. The tanks, interstages, and transition sections are
pressure vessels and can be pressurized to prevent the development of
compressive instability during all modes of sea handling, propellant
loading, erection, launch, and flight. Fill and vent lines provide
for controlled pressure loading and venting of the propellant tanks in

both horizontal and vertical vehicle attitudes.
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IT, A, General Features and Function (cont.)

The first-stage propulsion system is made up of the main
propellant tanks, the feed lines, pressurization system, and a single
gimballed thrust chamber regeneratively-cooled with a DelLaval nozzle,
gimbal, actuators, and associated structure. It uses RP-1 fuel pres-
surized by methane (CHy) using a unique pressurization technique called
Secondary VaPak. The oxidizer is liquid oxygen pressurized by an auto-
genous system using a heat exchanger on the engine. The mixture ratio
is controlled by control of the autogenous pressurizing gas flow. The
first-stage engine gimbal actuators utilize RP-1 fuel at tank pressure.
Roll control is provided during both stages of flight by four auxiliary
engines on the second-stage. These engines also provide pitch and
yvaw control for the second-stage as well as assisting in orbital

injection.

Flight reliability is enhanced using this system of
auxiliary chambers because: (a) they are started before the main
first-stage propulsion system and can be monitored for correct opera-
tion before flight and (b) they can be designed for '"one chamber out"

operation.
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II, A, General Features and Function (cont.)

The second-stage propulsion system has a rigid%y mounted
thrust chamber and utilizes an expandable nozzle. The chamber plus a
section of nozzle is nonregeneratively-cooled with hydrogen and the
remainder of the nozzle is radiation cooled. The chamber utilizes
liquid oxygen and liquid hydrogen as propellants. The oxygen uses
acceleration head augmented by its own vapor pressure as feed pressure.
No additional prepressurization is necessary. The hydrogen is pre-
pressurized for first-stage operation and uses an autogenous pressuriz-
ing system during second-stage operation whereby acceleration head
pressure drives hydrogen through a low pressure drop heat exchanger
mounted on the thrust chamber external wall. The expandable nozzle on
the second-stage provides a method of conforming to a simple configura-
tion envelope while still producing a large expansion ratio when opened

(compared to equivalent fixed nozzles).
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II, A, General Features and Function (cont.)

A slightly modified, nearly conventional, all-inertial
guidance system is incorporated in the vehicle's command module; it
returns with the module for recovery. Self-checking and sequencing

functions are included in the guidance system.

In the following sections the principle events and per-

formance characteristics of the‘vehicle are described.
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TABLE II-A-1

SUMMARY‘OF SEA DRAGON VEHICLE CHARACTERISTICS - CONFIGURATION No. 135

PROPULSION
Main Stage Engines TVC
Item Stage I Stage II (4) Engines
Nominal Thrust (1b) 80 x 10%(sea level) 14.12 x 10° (vac) 53,200 (ea)
Operating Time (sec) 81 260 1,340
Nominal Chamber Pressure (psia) 300 75 75
Nozzle Area Ratio 5.0:1 20:1 (exp. nozz) 20:1
Oxidizer LO, LO, LO,
Weight Oxidizer - Full Tank (1b) 17,617,568 8,005,045 583,000
Fuel RP-1 LH, 4 LH,
Weight Fuel, Full Tank (1b) 7,659,812 1,601,009 (and line) 116,000 (total)
Mixture Ratio - Oxidizer/Fuel 2.3:1 5:1 4.0:1
Stage Propellant Mass Fraction 0.888 0.887 --
VEHICLE WEIGHT
Vehicle Weight (1b)
Item Recoverable Expendable
Payload (nominal) 1,100,000% 1,121,000
Stage I At Launch (full tanks) 28,217,195 27,961,397
Stage I Empty (dry) (2,939,715 (2,684,017)
Stage II At Launch (full tanks) 10,631,893 10,631,893
Stage II Empty (dry) {1,025,839) ' (1,025,839)
Nominal Total Takeoff Weight 39,950,000 39,710,000
VEHICLE PERFORMANCE
Stage I Stage II
Velocity Increment (ft/sec) 5,800 17,630%*
Maximum Acceleration (g) 4.21 5.2%%%
Altitude at Burnout (ft) 125,000 750,000 (150 nm)
Altitude at Injection 1,822,800 (299.8 nm)
* This figure includes the beneficial effect of an eastward launch.

Tt includes allowance for a payload decrement of 3.16% for underwater
performance losses and 7.66% for a continuous burn versus restart trajectory
(total penalty = 10.8%). It should be recognized that the preliminary staging
ratio selection of 1.92 results in a payload 7% lower than the optimum value of
1.4. Use of a more optimum staging ratio would result in a payload of approxi-
mately 1,170,000 1b for the recoverable vehicle.

The performance given is for the recoverable vehicle. The data for the
expendable vehicle does not differ significantly.

*%*% At completion of the high thrust phase.

* %

Table II A-1
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TABLE II-~-A-2

SEA DRAGON STAGE I RECOVERABLE

CONFIGURATION No.

Propellants

LOy
RP-1

Tankage

RP-1 Tank

RP-1 Slosh Baffles

LO, Tank (Includes Common Blkhd)
LO, Slosh Baffles

LO, Tank Insulation
Insulation, Common Bulkhead
Encapsulation Skin
Insulation (Methane RP-1)
Encapsulation Skin

Skirts, Lines, and Structure

Forward Skirt and Separation Equipment
Aft Tank Support Skirt

Structure between Gimbal and Injector
Oxidizer Line from Tank to Injector
Fuel Line from Tank to Chamber

LO2 Fill and Vent Systen

RP-1 Fill and Vent System

Oxidizer Pressurization Equipment

Engine System

Gimbal

Actuators

Injector Assembly

Thrust Chamber

Ballast Mounting Structure
LO, Valve

RP-1 Valve

Oxidizer Pressurant

Heat Exchanger

Fuel Pressurant

Fuel Pressurization Equipment
Fuel Trapped in Tubes

Miscellaneous

Recovery Flare and Equipment

Insulation on LOp Line

Insulation on Pressurant Line

Misc. Weight (5% Tankage)

Structural Strengthening not Required
for Expendable Vehicle

TOTAL SYSTEM WEIGHT
Total Propellant Weight

Less Outage
Total Usable Propellant

25,066,406 _
Stage Mass Fraction = 28,217,195 °~

Weight (1b)

135 WEIGHT BREAKDOWN

Expendable
Version (1b)

17,617,568
7,659,812

420,496
33,200
948,678

40,000

18,000
9,479
13,428
1,760
2,493

29,200
39,000
54,000
59,000
40,900

500

500

3,160

122,600
44,000
88, 500
180,000
18,400
23,400
25,600

236,000

8,200

178,000

700

100,000

124,200
2,104
840
73,477

25,277,380
252,774
25,066,406

0.888 (0.896)

(874,280)*

(1,413,136)

(212,060)

(0)

(-43,000)

Subtotal

(1b)

25,277,380

1,487,534

226,260

1,025,400

200,621

33,421

28,217,195
(27,961,397)

* The figures in parenthesis refer to weight changes for an expendable version

of Configuration No. 135,

Table II A-2
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TABLE II-A-3

SEA DRAGON STAGE II
CONFIGURATION No. 135 WEIGHT BREAKDOWN

Propellants . Weight (1b) Subtotal (1b
LO,
in Tank 7,918,356
in Line to Chamber 86,689
8,005,045
LH2
in Tank 1,601,009
1,601,009
TOTAL 9,606,054
Tankage
LO, Tank 123,310
LH, Tank (includes bulkhead) 3.8,396
Encapsulation skin 13,428 -
Insulation on Bulkhead 9,479 464,613
Skirts, Lines, and Structure
Aft Tank Skirt 211,984
Skirt Between LO,-LH, Tank 27,137
LO, Line to Chamber 4,700
LH, Line to Chamber 1,360
Vortex Structure 2,700
LO, and LH; Fill and Vent System 1,525
Fuel Pressurizing Equipment 1,820 251,226
Engine System
Injector Assembly 10,000
Thrust Chamber 51,400
Expandable Nozzle 71,500
TVC System (Structure, Engine, Mounts) 5,300
LO, Valve 3,640
LHy Valve 4,480
Heat Exchanger 13,400
TVC Pressurization System 14,550
Oxidizer Pressurization Gases 52,000
Fuel Pressurization Gases 18,500 244,770
Miscellaneous
Fuel Tank Insulation 36,000
Oxidizer Tank Insulation 6,000
Misc Weight (5% of Tankage) 23,230 65,230
TOTAL SYSTEM WEIGHT 10,631,893
Total Propellant Weighy 9,606,054
Less Outage (1% of Total) 96,060
Less LH, Cooling Requirements 40,560
Less lst Stage TVC Weight 42,000
TOTAL USABLE PROPELLANTS 9,427,434
Mass Fraction = 9,427,434 = 0.887

10,631,893

Table II A-3
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II, Vehicle Description (cont.)

B. OPERATIONAL SEQUENCE

The operational sequence of the vehicle is considered to
start after the vehicle has been assembled and checked out and is ready
for fueling. After propellant servicing, the vehicle is towed to the
launch site and erected. Operational readiness is verified and the
launch sequence is started. The main events in the launch sequence are

illustrated in Figure II-A-4 and the flight sequence in Figure II-A-5.

A list of the major vehicle operations is presented in
Table II-B-1. More detailed plans and descriptions of the equipment for
the entire Sea Dragon operation are presented in the Operational Proce-
dures, Section III A of this volume. Detailed operational sequences or
discussions of the operation of the major subsystems are included in

corresponding portions of this report (i.e., Sections III A and B).
The recovery of the Apollo-type command module will be

similar to that used in current earth orbital programs and is also

illustrated in Figure II-A-5.

Page II-B-1
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I1, B, Operational Sequence (cont.)

The ballast unit will be recovered by inflating flotation
bags on the unit after launch of the vehicle. Prior to launch, the unit
will be attached to a buoy by means of a line, and an air hose to the
flotation bag on the ballast unit is supported by the same line. After
launch, the air hose will be connected to a service vessel for the ballast
recovery operations. Retrieval of both the ballast and the first stage,
after return from flight, is discussed in the section on the Operational

Procedures.

Page II-B-2
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II, Vehicle Description (cont.)

C. SYSTEM PERFORMANCE

As presently conceived, the recoverable version of Sea
Dragon will place into earth orbit a useful payload of 1,100,000 1b
in addition to the spent second stage and attached command and service
modules. An orbital altitude of 306 mm with a maximum eccentricity of
.005 and an inclination of 28° will be achieved by launching along the
Atlantic Missile Range (AMR) from a launch point 40 mi off Cape Canaveral.
Orbit injection will occur 22.4 min after launch at a point 4,100 nm

downrange.

After 81 sec of propulsion, the first-stage booster will
separate at an altitude of 125,000 ft and a velocity of’5,800 ft/sec,
having reached a peak acceleration of 4.2 g and after passing a peak
g of 1600 lb/ft2. The first-stage booster will coast to an altitude

of 335,000 ft after staging; during this period, the conical flare

Page II-C-1
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IT, C, System Performance (cont.)

will be inflated. Approximately 200 sec later, the flare.will be fully
inflated and atmospheric re-entry will begin, decelerating the first
stage at a maximum of 6.5g to an impact velocity of 300 ft/sec at a
location 170 nm downrange of the launch site. Water penetration of

45% of one body length occurs after impact and causes loading in the
tankage, which is adequately balanced by the 100 psi minimum internal
pressure. Because an inflatable flare and special structural reinforce-
ment are not required for an expendable configuration, a higher stage
propellant mass fraction is achievable and additional payload can be
delivered to orbit. The payload capability of Sea Dragon with an
expendable first stage will be 1,121,000 1b or an increase of 30,000 1b

for equivalent launch and orbit conditions.
The second-stage booster propels the vehicle with its main

engine for 260 sec, assisted by the low thrust auxiliary TVC engines

that continue burning to orbit injection 1,344 sec after launch.

Page II-C-2
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IT, C, System Performance (cont.)

Table II-A-1 shows the nominal performance characteristics
of the system. The trajectory characteristics are shown in Figures
ITI-C-1 and II-C-2. Also‘in Section II, F, I are presented discussions
of the performance analyses that have been conducted to evaluate the

vehicle propulsion, loads, and dynamics in its modes of operation. It

is shown therein that the main propulsion system has been optimized for

a staging ratio of 1.92:1, a first-stage area ratio of 5.0:1, and a
thrust-to—wéighf ratio of 2:1. : Limited analyses have shown that the
underwater launch causes a payload penalty of about 3.2% when compared
to surface launch; however, an optimum léunch mode has not been deter-
mined. The combined effects of sea state, wind, and thrust perturba-
tions have been found to cause launch dispersion effects within the
corrective capability of the firsf—stage contrgl system. Subsequent
flight maneuvers and wind influences, with longitudinal acceleration,
give rise to a structural loading that exceeds those developed in the

most severe water environment prior to flight. Whereas the fist-stage

Page II-C-3
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II, C, System Performance (cont.)

control system capability is found to be adequate, the auxiliary engines
for the second stage, as presently sized, appear to be marginal. Improve-

ment to an adequate level of TVC capability represents no basic problem.

The effect on payload capability of improvements in stage

mass fractions by utilization of higher performance materials or more

efficient design approaches is shown in Figure II-C-3 and I1II-D-5.

Page I1-C-4
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II, Vehicle Description (cont.)

D. VEHICLE SUBSYSTEMS
1. Propulsion
a. Introduction

The propulsion systems for Stage I and Stage II
on the Sea Dragon vehicle, Configuration No. 135, consist of all sub-
systems and components necessary for the propulsive operation of each
stage as assembled with vehicle elements. The subsystems of the

propulsion systems are defined as follows:

(1) Thrust Chamber Assembly

The thrust chamber assembly consists of
the injector, chamber and expansion section, main propellant control
valves, and connecting lines to the chamber gimbal mount, chamber
attachment, and thrust structure. The general arrangement of these

subsystems is shown in Figures II-D-1 and II-D-2.
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II, D, Vehicle Subsystems (cont.)

(2) Tankage and Structure

The tankage and structure subsystem
includes main propellant tankage, skirt sections, and mechanical joints
that enable assembly of the propulsion stages to vehicle elements and

to handling or servicing equipment.

(3) Propellant Pressurization and Feed

The propellant pressurization and feed
subsystem consists of lines, pressurization tanks, valves, controls
necessary for the pressurization of propellant tank ullage space, and

delivery of propellant to the thrust chamber injéctor.

(4) TVC Subsystem

The thrust vector control subsystem, in
the first-stage, consists of: gimbal, actuators, actuator controls,

and associated structure. In the second-stage it consists of auxiliary
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thrust chamber assemblies, chamber gimbals, chamber actuators and
controls, fuel feed lines, oxidizer supply including tankage, feed

lines, pressurization system, and associated structure.

(5) Propellant Servicing

The propellant servicing subsystem
includes all lines, connectors, '‘and valves necessary for the filling,
venting, and dumping of all pressurized and fluid filled compartments

from external sources.

b. Design Philosophy

The propulsion system design approach fulfills
the objective of simplicity by using a pressure-fed system with a
minimum of moving components, by using single engines for each stage,

and by using established designs such as the DelLaval nozzle and
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tubular wall construction. Use of sea handling for development and
launching operations of the vehicle allows utilization of very large
vehicles that are capable of 1lifting large unit payloads with attractive

system econony.

For reliability, the advantages of the vehicle
size have been exploited. Functional requirements on each component
have been held to a minimum. The simple designs should involve low
development and fabrication cost, and be rugged and reliable. Func-
tional checkout is enhanced and adequate durability for sea handling
and Stage I recovery is predicted. Examples of the execution of this

design approach are the following:

The Stage II main LO, propellant feed system
must provide start, shutdown, and throttling functions. While it is
possible to perform these functions with a somewhat complex single
valve, two simpler valves in tandem are used in this design. The start

shutdown functions are provided by one iarge mechanically-controlled
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propellant line pressure-operated poppet valve. The throttling func-
tion is provided by a second valve located downstream of the shutoff

valve.

Materials selected for the tankage and structure
result in conservative stage mass fractions. All tankage is designed to
withstand uniform pressure at proof testing of the highest pressure
experienced by any single region of the tank. Thus advantage has not
been taken of the pressure distributions that result from the hydro-
dynamic heads, which would permit reducing tank wall thicknesses in the

forward tank portions.

Wherever possible, components that may require
repair or replacement are located above the water line when the vehicle
is in the launch attitude. 1In the horizontal position, all components

can be placed above water by rotation of the vehicle.
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Fill and vent piping system provide control of
the contents and pressure levels of all Stage I and Stage II compart-
ments by external services through umbilical lines connected above the
water line for all sea handling modes. Functional checkout of line

components is possible by similar means.

Propellant feed is provided by simple gas
pressurization rather than by the more sophisticated (and complicated)
turbopump units. The gas pressurization system utilizes a combination
of vaporized propellants or fluids and hydrostatic pressure of the
propellants themselves. Pressure-fed systems result in rugged tanks
that can be used to advantage for first-stage recovery as well as for
transportation and handling. This pressure-fed approach applied to
the second stage also supplies simplicity in start and flight operation.
Loss in second-stage mass fraction because of the pressure-fed system
is compensated for by the improved engine performance resulting from
the use of an expandable nozzle that permits the use of low tank and
chamber pressure levels while still retaining a high nozzle gas

expansion ratio and specific impulse.
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In the first stage, a single large thrust cham-
ber is used instead of the cluster of chambers suggested in most large
vehicle designs. The simplicity of a single chamber and its vehicle
installation provide reliability, econony, and rugged features for
recovery and reuse. Large engine development testing and launching
operations at sea, well removed from noise and explosion hazard prob-

lems, is another advantage of the sea operation concept.

c. Propellant Selection

The propellants selected for the first-stage
engine were LOZ/RP—I at a mixture ratio of 2.3:1. The primary basis
for its selection is a low cost per pound with a reasonable perform-

ance and its high state-of-the-art status.
The propellants selected for second-stage

engine was L02/LH2 at a mixture ratio of 5:1. The primary basis for

its selection is its high performance at a reasonable cost per pound.
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The state of the art is advancing rapidly because of the current wide-
spread interest in this combination. For both stages, the specific

impulses used for vehicle performance predictions are conservative.

d. Stage 1 Propulsion System

(1) Description

The Stage I rocket propulsion system is a

liquid bipropellant, pressure-fed stage. The general arrangement of the

stage is shown in Figure II-D-1. Basic system characteristics are

given in the following table:

i Diameter 75 ft
Length 262 ft
Weight, total 28 x lO6 1b (approx)
Usable propellants 25 . 10° 1b (approx)
. Propulsion system mass 0.892
fraction

,“
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Propellants LO,/RP-1
Mixture ratio 2.3:1
Thrust chamber type Delaval regeneratively-
cooled
Throat diameter 41.6 ft
Throat area 1360 ft2
Expansion area ratio 5:1
. 6
Thrust nominal 80 x 10 1b
I, ;sea level (actual) 242 sec
Chamber pressure nominal 300 psia
Thrust vector control Gimbal plus roll control
by Stage II aux engines
Propellant tank ullage 226 psia
pressures, nominal LOp
RP-1 425 psia
Propellants are fed from integral tankage by
a combination of ullage pressurization and dynamic heads. The tankage

is shaped conventionally with exception of the forward closure on the

forward LO, tank. This closure is a 60° cone as is required to enable
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water entry and recovery of the stage. LO2 is fed to the ;hrust

chamber through a multiple line that is routed outside of the aft RP-1

tank. During expulsion of the LO,, the difference between required

injector inlet and dynamic heads is provided by ullage pressure that is

developed by heating a portion of the LO, flow and ducting it to the

ullage space. This autogenous system is controlled by throttling the
flow from the high pressure, LO, injector inlet manifold down stream
of the main LO2 valve to the heat exchanger, which is located on the

thrust chamber assembly. Figure II-D-3 is a schematic of the pres-

surization systems.

The RP-1 fuel tank is located aft of and
integral with the LO, tank; an insulated bulkhead separates the tank
compartments. The RP-1 tank pressure is developed by methane (CH4)
that is stored in a separate tank at equilibrium with its vapor
pressure at 500 psia. The vapor pressure is used as the driving

force to inject methane vapor into the bottom of the RP-1 tank where

it is heated as it bubbles through to the ullage space. This
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secondary VaPak system maintains RP-1 feed line inlet pressure at
equilibrium with the methane tank pressure. Ullage pressure is main-
tained at a level equal to the difference between methane tank pressure

and the dynamic head. No regulating controls are therefore required.

The ignition system is hypergolic and uses the
chamber injection of tfiethylaluminum. The TEA is pressurized by a

blowdown gas system.

Main propellant valves are poppet types that
are sealed in the closed position with a clamped diaphragm, which is
sheared by the poppet movement. Valve actuation forces are provided
by the propellant feed line pressures and valve position 1is controlled

with mechanical detents.
The gimbal is a rubber pad device that allows

chamber motion by shear deflection. This was selected for study

because it has promise of simplicity without problems of lubrication
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and bearing tolerances. This approach was considered as '"frozen" for

the study vehicle. However, a brief investigation of TVC by secondary
injection was also made with promising results. A secondary injection
installation is shown in Figure II-D-4. The gimbal actuators are low

pressure hydraulic cylinders that utilize fuel at tank pressure as

energy source.

Propellant tanks are designed by the propellant
feed requirements. The aft skirt consists of stiffened skin and frames
that counteract the gimbal actuator and ballast support loads. For
purposes of the study, the tank materials were assumed to be 2014-T6
aluminum for conservatism and all weights are for this material.

Figure II-D-5 illustrates changes in system mass fractions for various

materials.

Fill, vent, and dump lines are provided that
enable loading and off loading propellants and pressure charges from
all Stage I compartments. Lines from Stage I are connected by means

of internal umbilical to Stage II. From the internal umbilical on

Page II-D-12



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

II, D, Vehicle Subsystems (cont.)

Stage II, the lines are routed to the external umbilical at Station 180.
Control of the contents and pressure levels of all Stage I compartments
by ground equipment is possible through lines connected at the external

umbilical; component functional checkout is possible by the same means.

e. Stage II Propulsion System

(1) Description

The Stage II rocket propulsion system is

a bipropellant pressure-fed stage. The general arrangement is shown

in Figure II-D-2. Basic Stage II propulsion system characteristics are

given in the following tabulation:

Diameter 75 ft

Length to separation jgint 188 ft

Overall length 275 ft

Weight, total 10.6 x 10° 1b (approx)
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6
Usable propellants 9.5 x 10 1b (approx)

Propulsion system mass fraction 0.8905

Propellants

Mixture ratio

Thrust Chamber Type
Throat diameter
Throat area
Expansion area ratio
Thrust nominal

I vac (actual)

Chamber pressure, nominal

Thrust vector plus roll
control

Propellant tank pressures,
nominal

LO
2

LH2
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The second-stage thrust chamber and a portion
of the expansion section of the nozzle are cooled, using conventional
tubular wall construction, with hydrogen from the main tank. The
hydrogen flow is non-regenerative with the heated hydrogen gas being
2xpelled at the open ended tubes into the main gas stream at an area
ratio of 6.2:1. The remainder of the nozzle is constructed of thin
stainless steel and is cooled by radiation alone. This cooling
technique is possibfe because ,of the low chamber pressure and the
resulting lowered heat flux. The thin sheet metal nozzle is folded
about the first-stage tankage during first-stage operation and is
expanded to a full conical shape when the second-stage engine fires.

An example of a nozzle of this type is shown in Figure II-D-6.

Propellants are pressure fed from integral
tankage. 1Injector inlet pressure is developed by a combination of
ullage pressurization and dynamic head. The forward LO, tank is

pressurized by the LO,, which is loaded at a temperature equilibrium
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with its vapor pressure at 25 psia. The required injector inlet pressure
of 100 psia results from the additive dynamic head. The aft located

LH, tank is separated from the LO, tank by an insulated bulkhead.
Pressurization of the LH2 tank 1s autogenous; liquid hydrogen is
admitted to a heat exchanger on the cooled ;ection of the thrust cham-
ber where it is vaporized. Vapor is ducted to the propellant tank

ullage in a low pressure drop line. Figure II-D-7 is a schematic of

the Stage II pressurization systems.

Auxiliary thrust vector control engines use
propellant from the main LH, tank; LO2 is provided from separate
spherical tanks which are pressurized from a regulated high pressure

gas source as shown in the schematic of Figure II-D-8.

Main stage and auxiliary engines are ignited

by flow down chamber injection of gas pressurized triethylaluminum.
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The main propellant valves are poppet types
normally sealed in the closed position with clamped diaphragms that
fail with the initial poppet motion. The poppets are actuated by
propellant-fed line pressure and their travel is controlled with

mechanical detents.

Propellant tank structure is designed by the
propellant feed pressure requirements and are stabilized by pressure
for all handling and flight loads. Skirt structure, other than propel-
lant tanks, consist of stiffened skins. As for the Stage I tanks, the

material assumed for study purposes was 2014-T6 aluminum.

Fill, vent, and dump lines are provided for
loading and unloading of propellants and pressure charges from all
Stage II compartments. Lines from Stage II compartments are routed
to an external umbilical at Station 180. Control of all the contents
and pressure levels of all Stage II compartments is possible by ground
equipment by external lines connected at this point; component func-

tional checkout is possible by the same means.
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2. Interstage Structure Assemblies

a. General

The interstage structure assemblies of the

vehicle are the interconnecting structures that transmit the loads

between the major sections of the

(1) The

vehicle. These structures are:

cylindrical structure supporting the

command module and enclosing the service module

(2) The

of the payload which encloses the

(3) The

payload and second-stage

(4) The

conical structure at the forward end

payload service module

cylindrical structure between the

interstage and separation structure

between the first and second stages.
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(5) The transition structure which connects
the second stage aft tank with the nozzle skirt and which carries the

structural loads from the above Stage I and II interstage structure.

The interstage structure (Item 4) incorporates
provisions for the separation or staging operation between Stage I and

IT1 as shown in Figures I1-D-9 and II-D-10.

Except in the case discussed above, the inter-
stage structures do not contain staging provisions since the entire
vehicle forward of the first stage remains connected through orbit
attainment. However, there are separation devices for the command
module for abort and re-entry operations. All interstage structures
are designed to provide access as required for assembly and mainte-
nance operations. When these structures are pressurized, and
emergency access is required, air-lock provisions will be used for

manned entry.
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b. Interstage Assembly, Stage I to II

A sketch of a typical assembly is shown in

Figure 171-D-9. 1Its basic function is to connect the two stages and
provide for the staging function. In addition, the expandable nozzle

1« attached to the forward end of this structure at the transition-

interstage connection.  The basic structure is a high strength steel

cviinder bolted to the stages at each end. 1t will be pressurized to
|

b0 psic Jor two reasons: (a) to prevent collapse caused by the sea

hyvdrostatic pressure while in the erect launch position, and (b) to
provide a positive separation force during staging. A linear shaped
charde assembly 1s located slightly art of the second-stage joint to
clftect scparation of the structure. Additional shaped charge
assemblies will be used to jettison the remaining structure after

completle separation to leave a nose configuration suitable for recovery.

The sequence of staging operations is shown on Figure II-D-10.
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C. Transition Structure

The transition structure will be primarily
constructed of aluminum reinforced with stiffeners designed also to
take longitudinal loadings. At the aft end, however, there will be a
material change to steel to provide for second stage operating condi-
tions where the metal temperatures in the vicinity of the nozzle skirt
will be high. The entire outside surface will be coated to resist sea

water corrosion.

This section is designed by flight conditions
as an unpressurized structure. It will, however, be made pressure
tight for reasons associated with water handling. An internal pressure
of 40 to 45 psig will be used to counteract external hydrostatic pres-
sures when the vehicle is in an erect position. No pressure is required
for structural reasons but will be present during the fully loaded

erection maneuver. Just before the vehicle is launched, the compartment
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pressure will be allowed to start bleeding down to a low pressure.
This low pressure will be attained before the flight Stage I and II
staging operation. This prevents crushing of the second stage chamber

when its internal pressure decreases rapidly during staging.
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3. Payload

The basic payload is assumed to be a tank containing
more than one million pounds of liquid hydrogen with a service module
attached to provide those functions that must be performed by the pay-
load after orbit has been achieved and the command module has separated
to return to earth. Because the second stage and command module are
attached to this payload, the entire payload that is placed in circular
orbit includes the entire vehicle forward of the second stage as shown

in the flight sequence illustration, Figure II-A-5.

The payload could be varied for other missions to
provide additional propulsion stages or variations in configuration

density and function.

The command module is a manned Apollo type space craft

module that will provide the basic guidance, control, and communications

functions during flight. The module will return to earth using its
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service module to provide separation and recovery functions. An abort
propulsion system is also provided. If the only function of the

command module is to ensure attainment of orbit by the LH, payload,

2
a considerably smaller and simpler module similiar to Mercury or Gemini

could be utilized.

The payload fuel tank will be constructed of alumimum,
and provisions are made'for fueliﬁg and venting in the same manner as
the liquid hydrogen tank in the second stage. The tank will be insu-
lated as necessary to limit heat transfer during transportation, flight,

and the orbital environment.

After orbit has been attained aéd the command module
has separated and returned to earth, the remaining payload will continue
to orbit until rendezvous with a spacecraft. The service module of the
payload will provide communications and attitude control functions to

assist in location, identification, and docking. Fuel transfer functions

will also be provided.
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4. Control System

In the present design, all of Sea Dragon attitude
control is achieved by jet forces; neither moveable nor fixed fins are
employed. Directional control moments for the vehicle during first-
stage operation are developed by rotation of the entire first-stage
engine, which is gimbaled. Movement of the system is obtained by means
of piston-type actuators and an open-loop hydraulic system fed by the
main fuel tank at 400 psi. An estimated 40,000 1b of RP-1 is dumped
after use by the control system. Second-stage directional control is
accomplished by four auxiliary LOX-hydrogen engines, each pivoted about
a single inclined axis and electrically actuated to provide a maximum
side thrust component of + 53,200 lb or an equivalent deflection of
the main engine thrust equal to 0.43°. These engines provide roll
control throughout all stages of flight in addition to directional

control after completion of first-stage operation.
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Analyses of the control system have consisted of
evaluating performance capabilities of the preliminary design, which
was on the basis of estimates, while also defining a more complete set
of requirements for the final design. 1In this process, consideration
was given to the effects of imperfections in the vehicle itself and of
perturbations caused by its environment and program. Wind and sea
conditions, thrust and aerodynamic misalignments, maneuver programs,
propellant sloshing, and body bending were analyzed. Excepting the
two latter effects, it was found that the original estimated + 3°
rotation of the‘first—stage main engine provides more than adequate
control capability. Propellant sloshing and body bending influence
mainly the control loop stability, which was not completely analyzed.
Preliminary results indicated that sloshing will not be troublesome
but that body bending coupling possibilities will require careful
selection of loop gain, instrﬁment location, and actuation system lag.
For this evaluation, a simplified autopilot désign was selected on the
basis of a single plane rigid body analysis of first-stage attitudé

control.
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The second-stage system requirement is determined
primarily by the effects of thrust misalignment, although staging
effects, propellant sloshing, wind and maneuver program conditions were
also examined. It was found that the combined effects of thrust mis-
alignment and wind forces require a directional trimming moment corre-
sponding to .37° main thrust deflection. To obtain sufficient per-
formance margin above the .43° present design capability, the auxiliary
engine size will be increased; however, a more complete analysis of
the system requirements will be made first. In particular, the effect
and iikelihood of control system saturation caused by propellant slosh-
ing must be considered when specifying the required performance margin.
The auxiliary engines provide the vehicle roll correction capability
that is difficult to achieve with the sinéle first-stage gimbaled
engine. For both stages, alternate TVC concepts have been studied

and will be reviewed in follow-on vehicle design phases.
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5. Guidance System

a. System Performance and General Characteristics

The fully inertial guidance system proposed for
the Sea Dragon launch and orbital injection vehicle has been specially
adapted for vehicles launched at a sea site sufficiently close to shore

Loran installations. The system is characterized by

(1) Capability for full self alignment at sea,
both in azimuth and vertical directions, through gyrocompass and stable-
vertical search modes, under the conditions of existing roll and pitch

while afloat.

(2) Necessity for a prelaunch insertion of
initial position and velocity conditions obtained from shore installa-
tions, monitored continuously and mechanized in the vehicle guidance

system.
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(3) A fully self-contained inertial perform-
ance during the flight mode of the vehicle from launch to injection

into orbit.

The nominal trajectory injects into a
306 nm altitude circular orbit approximately 4,100 nm downrange from
the launch site, 22.4 min after first-stage ignition. The injection

|
tolerances caused by guidance system accuracies are:

(a) Orbit altitudes and velocity

300 + 4.27 nm and 24,888 + 15 ft/sec

(b) An eccentricity of established orbit

of O + 0.005, with a probability of 0.99

(c¢) A difference between apogee and
perigee altitudes of 37.5 nm, with another probability of 0.99, for an
overall probability for not exceeding the mission orbital specifications

of 0.98.
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The error budget drawn up by the
performance analysis has assigned the following component and parameter

tolerances, which are on the basis of meeting the foregoing injection

requirements.
Uncompensated gyro drift rate = 0.022°/hr
Initial platform misalignment = 1/3 min of arc
Accelerometer error = 10_49

Initial position determination error 2,000 £t = 0.33 n

3.16 knots

Initial velocity determination error

These values are within the state
of the art, except for the initial alignment accuracy, in a self-align-
ing mode and at sea. Consequently, this mode of operation will require
a rather heavy gyro-compass:and stable-vertical erection system, more

of a naval-ordnance type than of an avionics type.
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Systems growth capability will
include the addition of radio-command guidance, and possibly, stellar
monitoring as a further improvement in system accuracy and reliability
and for mission growth. Further, in the orbital mode, the addition of
a horizontal scanner and other auxiliary equipment is anticipated as a

necessity for adequate attitude control.

A significant factor influencing
the study of guidance concepts is that there may be a human crew aboard.
Accordingly, the system reliability must be man-rated, and provisions
made for the crew to become an important link in the orbital mode of

operation.

While an entirely automatic opera-
tion is envisioned, the crew must be able to provide certain overrides,
insert radioed guidance information, and take action in possible mission

abort situations.
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b. Physical Characteristics

The guidance system selected for the Sea Dragon
consists of two main assemblies, one containing the miniaturized guidance
computer and associated electronics, and the other, a relatively heavy
stable platform. This equipment will be located in the command modules

’

of the wvehicle.

The computer, which uses transistor components
and solid wiring, weighs 100 1lb, occupies 1.0 ft3, consumes 100 w of
electric power, and has a storage capacity of about 8,000 words. This
may be compared to an existing prototype digital computer using printed
circuitry weighing 35 1b, occupying 0.3 ft3 and consuming 30 w of

electric power. The actual choice will be determined primarily by
reliability considerations. The entire computer and electronics package
is thermally and shock-insulated, and its estimated physical character-
istics are as follows: weight, 200 1b and volume 7 ft3. The estimated

power requirements are: 300 w at 26 v, 400 cps. The design of the

package will allow operation in the space environment.
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The accuracy requirements for self-alignment of
the stable platform call for gyros with very high angular momentum, and
therefore high moments of inertia. This requirement will lead to a
considerably increased size and weight of stable platform by comparison
with existing units for avionics applications. Anticipated physical
characteristics for a stable platform unit located within the pressurized
capsule are: weight, 400 1b, volume 6 ft3, and 1 kw peak power demand.
By comparison, a typical fully developed miniaturé platform for avionics
applications weighs 331 1b, occupies 0.65 ft3 of space, and consumes

230 w peak power.

In addition, a certain allowahce for radio
equipment and for a telesextant to be uséd by the astronauts may be
included. A horizon scanner, probably mounted on a secondary stable
platform slaved to the master unit, will be used in the orbital mode

to establish the local vertical.
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c. Special Features

The rather special conditions existing at the
launch of the vehicle floating at sea in the vertical position impose
the requirements of an accurate self-alignment of the stable platform
in the required aximuth and vertical directions. Such an alignment
cannot be performed in the conventional manner of using an optical
alignment system located outside the vehicle. Instead, the highly
accurate gyro-pendulum self-erecting system of the vehicle stable
platform will operate during this mode as a self-contained North and
vertical seeking element. A simplified block diagram of the self-

alignment mode is shown in Figure II-D-11.
During the flight-navigation mode of the iner-

tial guidance system after launch, which is diagrammed in Figure II-D-12,

the use of the all-inertial system will obviate the necessity for a
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network of ground stations along the ephemeris of the inertial 4100 nm
downrange flight of the vehicle till its injection into orbit. More-
over, the guidance system of the type proposed here will provide complete
freedom of selection of orbital p}anes of the vehicle and of the injec-
tion trajectory. 1In fact, it is expected to be sufficiently flexible

to accommodate future growth or expansion to the required modes of
operation, mission and)maneuverability requirements, orbital navigation
with full attitude control, and a re-entry with or without active

participation of the crew.

The location of the stable platform, the asso-
ciated electronics and digital computer packages, and the horizon scanner
and radio transponders in the command module of the Sea Dragon vehicle
will ensure complete recoverability of this expensive precision equip-
ment because the command module will be designed with full capability

“for controlled re-entry.
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11. D, Vehicle Subsystems (cont.)

An essential simplification of the overall
system is expected to be achieved through a judicious application of
the multi-function principle to various system elements, networks, and
subsystems so that they could be switched sequentially into different
modes of operation, as required. However,.the demand for a very high
level of reliability may, in general, require an emphasis on overdesign
in some areas as well as a planned redundancy of the most critical

subsystems and channels of operation.

For example, marked simplification of the guidance
and control equipment is achieved by using the vehicle-borne equipment
to perform in sequential modes of operation the various prelaunch check-
out and alignment functions as well as the airborne guidance. Test and
checkout equipment is simplified by using the airborne digital computer
to check itself functionally and to monitor the performance of the

guidance system during all modes of operation.
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6. Recovery

A recovery system for the Sea Dragon first-stage
vehicle has been selected on the basis of operational simplicity and
reliability. In choosing the recovery method, advantage was taken of
the increased strength of the pressurized booster in overcoming adverse
scale effects that tend to make very large vehicles less adaptable to
conventional recovery methods; consideration of this size scale effect
showed, for vehicles that are aerodynamically decelerated to a given
laﬁding velocity, that the ratio of required ''drag diameter" (size of
accessory drag device) to vehicle diameter increases as vehicle size
increases. Deceleration of the Sea Dragon vehicle to normal letdown
velocities of 20-25 fps would require a drag device, for example, a
parachute, of 3,000 ft dia.To overcome this problem,use was made of the
inherent structural strength of the Sea Dragon (a result of using a

pressure-fed propellant feed system).

~

Page II-D-3



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

II, D, Vehicle Subsystems (cont.)

The booster tanks in a pressurized condition (with
ullage pressurant) can counteract landing loads most efficiently in an
axial direction. Therefore, the final attitude of the vehicle at water
impact, regardless of the method used to reach terminal veldéity, was
restricted to a nose down vertical position. Because final decelera-
tion of the vehicle will be caused by water impact forces, analyses of
the hydrodynamic pressures and decelerations were carried out so that
limiting impact velocities could be established. Pressure distributions
over the conical nose of the vehicle were quantitatively predicted and
compared with experimental results. Deceleration-time histories were
developed; for an impact velocity of 600 ft/sec a maximum deceleration
of 90 g is encountered, and for 300 ft/sec the maximum is 22 g, (see
Figure II1-D-13) assuming a cone half angle (B) = 30°. Analysis of the
structural response to impact loads at various velocities showed that
for velocities less than 600 ft/sec no dynamic load amplification will

occur. Using these facts, an allowable impact velocity-tank pressure
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11, D, Vehicle Subsystems (cont.)

criterion was established, relating water entry velocity to tank pressure
required for acceptable axial load reactions, i.e., for a LO2 tank
pressure of 400 psi an impact velocity of 600 ft/sec can be accepted.

For 100 psi (the first-stage LO, tank pressure achieved at burnout),

the allowable impact velocity is slightly less than 300 ft/sec (Figure

I1-D-14).

The basic recovery sequence consists of two main
phases: An atmospheric entry phase and a terminal or impact phase.
At first-stage burnout, the propellant valves in the booster are closed
and the pressurant gases are trapped in the tank (approx. 100 psi in the
LO, tank and approx. 290 psi in the RP-1 tank). After staging occurs,
tﬁe first stage coasts upward along its ballistic trajectory and then
re-enters the atmosphere. During atmospheric flight, drag and stabili-
zation forces are produced~so that vertical impact at the proper terminal

velocity is achieved.
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Three different aerodynamic deceleration methods were
considered: Parachutes, large first-stage nozzle skirt, and inflatable
aerodynamic decelerator. Parachutes were excluded because of potential
deployment and attachment problems. The large nozzle skirt concept,
which made use of a very large area ratio first—stage engine, had the
highest estimated reliability because of its passive operation as a
decelerator. However, because of relatively high drag losses during
éscent flight, possible nozzle vibration caused by the high degree of
overexpansion and separation at low altitude, and adverse reaction to
sea operation towing loads, this concept was discarded for the present

time.

The inflatable flare decelerator was selected for
the Sea Dragon because it provides a high degree of reliability and
ease of operation with minimum ascent drag penalty. This device is
attached, in deflated package form, to the first-stage thrust chamber.
When inflated, it takes the form of a large conical flare 300 ft dia

with a half angle of 55°.

Page II-D-40



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

11, D, Vehicle Subsystems (cont.)

The flare is made up of a large, 30 ft dia torus
rigidized with a smaller inflatable tube 10 ft dia and covered with a
surface generating outer skin. The torus and supporting tubes are
constructed of rubberized nylon-dacron reinforced fabric and are pro-
tected from thermal environment by the outer skin. The outer skin is
an ablating rubberized asbestos fabric and is sacrificial; that is,
it is replaced for each flight. The outer skin is kept in tension and
carries the aerodynamic extefnal pressure of 5 psia max by the reaction

of the tubes on the torus structure.

The flare structure is inflated to a maximum of 30
psia with pressurant gas (CHy) from the first-stage fuél tank. Thus,
the need for a separate gas supply to inflate the flare is avoided.
After inflation of the flare, there remains sufficient pressure in the

fuel tank to counteract the impact. loads.
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The maximum temperature point on the flare skin during
re-entry reaches approximately 1000°F; however, the asbestos cloth with

its ablative covering can withstand this temperature pulse.
The flare device represents a weight penalty of 3.8%
of recovered weight, which corresponds to a payload penalty of approxi-

mately 1.7%.

7. Vehicle Secondary Subsystems

a. Power Supplies

The main power supplies for the vehicle during
flight will be the batteries and associated equipment located in the
compartment between the forward end of the second stage and the aft

end of the payload. 1In this compartment, power converters will be used
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11, D, Vehicle Subsystems (cont.)

s

to convert the direct current battery power into alternating current
as required for the various subsystems of the vehicle. Separate power
supplies will be provided in the command module and its service module
for their operation after separation from the vehicle. A separate

power supply will be provided on’ the first stage for recovery operations.

During the towing of each individual stage,
electrical powér will be supplied externally from the towing ship.
After assembly into the complete vehicle, power will continue to be
supplied by an external power supply at the launch point and during
the erection operations and subsequent operations up to final prelaunch

Checkout.

Before final prelaunch checkout, the vehicle
power supply batteries will be activated and the external power supply
disconnected. This final checkout will be performed using vehicle power
only and the external power for vehicle functions will not be reconnected

except in case of an extended delay in flight operations.
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The first-stage power supply for recovery purposes
will be a battery pack on the. first stage that will be checked out prior
to launch, but will not be used until after separation of the first stage
from the vehicle. This power supply will provide power for a sequencing
system that will control all functions of the onboard recovery system

and will provide power for the operation of these systems.

The main functions that will be controlled by
the sequencing equipment are: jettisoning of the forward interstage
structure by means of explosive charges; inflation of the recovery flare
bag; telemetry throughout the recovery phase including impact; and
signaling of the location of the first stage after impact through an

active beacon and lights.

The onboard equipment for the first stage will
be rugged enough to withstand the landing impact. The battery pack will
be comprised of dry cells potted in plastic, and the sequencing equip-
ment will be especially designed for the purpose and will be shock-

mounted.
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All major external electricalwiring will be
contained in conduits that are pressurized with dry nitrogen gas, and
a replenishment system will maintain the pressure. The replenishment
rate will be monitored to assure there are no leaks in the system. The
electrical connection including the umbilical cord connection will be
adaptations of currently available hardware at the time period of the

development program.

b. Ordnance System

There are vehicle and propulsion system func-
tions that will be accomplished by means of various types of ordnance
items. A partial list of these is:

(1) Command module abort propulsion system

(2) Posigrade and retrograde propulsion
systems in the service module for the command module

(3) Command module abort separation system
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)
(4) Command module re-entry separation system
(5) Interstage (Stage I/II1) separation system
(6) Propulsion system valve operating devices
(7) Ballast staging devices

(8) Frist-stage recovery operation devices

There will be an integrated ordnance system
that includes provisions for checkout of all items and for operations

as commanded by the guidance computer and sequencing equipment.

Positive mechanical safe and arm provisions will
be made for all ordnance items to prevent inadvertent firing. These
safe and arm mechanisms will be operated remotely by electrical signals
and will be monitored as to position. These mechanisms will be reversi-

ble to provide for operational checkout and for safety after checkout.
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b

The first-stage recovery operation devices will
operate after separation from the vehicle, and therefore will operate
separately with its own sequencing system and power supply. However,
the checkout procedures and equipment will be integrated with those of

the vehicle.

8. Ballast

The ballast unit provides aft end flotation for sea
handling and a balancing mass for erection and stabilizing of the vehicle
in the launch altitude. The unit is shown in interface with Stage I in

Figure II-D-1.

The ballast unit consists of a structural assembly
of six cylindrical tanks and support struts. The forward structural
element is an orifice that provides a control of thrust chamber environ-

ment for underwater operation. The ballast unit as attached to Stage I
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II, D, Vehicle Subsystems (cont.)

thrust chamber assembly, and with struts to the aft skirt, provides aft
end flotation for sea handling of the vehicle. The ballast tankage,
when filled with a heavy fluid, SG = 2, such as drilling mud, provides
balancing mass that erects and stabilizes the vehicle in the vertical
launch attitude. Provisions exist for staging the ballast during the

ignition sequence.
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II, Vehicle Description (cont.)

E. VEHICLE STRUCTURAL CHARACTERISTICS

For use in the investigation of vehicle dynamics, primarily,
the airframe stiffness and mode shapes were computed. This was done
for the many different vehicle conditions of interest, such as towing,
fueling, launch, flight, and impact. Characteristic results of the
weight and stiffness distribution calculations are given in Figures

II-E-1, -2 and -3.

From these results, modal analyses were made using a modi-
fied Myklestad technique, mechanized for digital computation. The
mode shapes and frequencies for two vehicle conditions were thus deter-
mined; these are shown in Figures II-E-4 and II-E-5, Although used
primarily for launch and towing dynamics analyses, these modal data
were also used in considering the autopilot-control-body loops and

instrument locations.

Page II-E-1



Report No. LRP 297, Volume 1

FF031JT1 3€ UOTINTIISTIA IYDT2M

UAHHON NOILVLS

0z§

09€ 02

09T

0zl

ISVTIVE HIIM

AEROJET-GENERAL CORPORATION

8°9€€ ROIIVIS = 90

_~t|83m 0T X 90°TZ = B

% - soTs (0T X gLoTt = N
ISYTIVE LOOHLIA ¥°86Z NOLIVIS = 00

| T

0BL0026

09T

0

(¢-OT X 33/9qT) FYONYT Lri0/LHOTIN

Figure II-E-1



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

g
3
— §
\
I
8
. ¥§
8
(=]
- —1&
g \
N~
E 8
 § 2
g 3
N
s
g
>\\‘::§
o
N
—8
8
18
<3
<3
(=]
S 0 -~ o -]
(A1) gp0T X va
—to

Figure II-E-2

STATION NUMBER

EA versus Length




Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

Report No. LRP 297, Volume II

520

T -

&
g
g
3
2
o
&
&
8 2
N~
B
: g
3 o
¥ 5
3
‘8
&
magy
il :
o
N
o
B
8
8
3

N ~3 o~ (=

(gr-OT * AN/,T) 13

Figure II-E-3

STATION NUMBER

EI versus Length




Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

1.0

-1 .O

« NORMALIZED MODAL DEFLECTION

.1 00

1.0

.100

Pirst Mode £q = 3.01 eps
-137005!1 m

N

NC %

N =
100 200 " 300 400 500
AXIAL LENGTH - FT
MMOf2=3.23m
X, = 1,99 x 10* Sings
N
100 200 300 400 500
AXIAL LENOTH - F?
Third Mode f3 = 4.25 eps
lb==&37x1 8lugs
\
/ \ "
4 \__—‘/
100 200 300 400 500

Bending Modes, Launch Condition

Figure II-E-4




Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

] | I
Frst Node f1 = 3.18 eps

1.0 ¥, = 3.65 x 10* Slugs

0
N —
-1.0
8
é 100 T T T T T
R\\ Seeond Mode £ = 5.41 eps
é N %, = 2,125 x 10% Slugs
g 0 \\ T TN
t
_é -1.0
1.0 4 1 | T
'\ Third Node f3 = 7.58 eps
W = .824 x 10 Slugs
) \ 7 -
N T
-1-0 100 200 300 400

AXIAL LENGTH - F2

Bending Modes, Empty Condition

Figure II-E-5



Report No. LRP 297, Volume 1

AERQJET-GENERAL CORPORATION

II, Vehicle Description (cont.)

F. VEHICLE ANALYSIS

1. System Performance

The Sea Dragon recoverable vehicle Configuration
No. 135 has a capability to deliver 1,10 million pounds of payload to
a circular earth orbit of 300 nm altitude when launched from the sea
off Cape Canaveral invan eastward direction. A preliminary optimization
study established the following design parameters: first-stage nozzle
area ratio of 5.0; thrust to weight ratio of first stage of 2.0, and
staging ratio of 1.9 (mass ratio of the second stage/mass ratio of

the first stage).

To accomplish a launch at sea, the first stage engine
operates underwater for approximately 5 sec until total emergence of
the vehicle from the sea. During this period, the variations in thrust,
drag, buoyancy, and ballast weight combine to produce a momentary
inflection in the acceleration characteristic. During underwater’
engine operation, the large ambient hydrostatic pressure is accomo-

dated by a self-compensating plug-tupe ballast unit.
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II, F, Venicle Description (cont.)

When the vehicle has reached 280 ft/sec, it undergoes

a pitch maneuver or kick downward of approximately 7° rotation. There-

after it begins a gravity turn and continues to orbit. The first
stage burns outatanaltitude of 125,000 ft and at a velocity of 5,800
ft/sec. The first stage is immediately separated and the second stage
is ignited with a minimum of coasting. At the end of the second
stage burning 260 sec later, the altitude is 150 nm and the velocity
23,430 ft/sec. The auxiliary engines continue to burn for a total of
about 22,4 min, During this low thrust period the altitude increases
to 300 nm and the trajectory is shaped to reduce eccentricity. The

entire trajectory is illustrated in Figure II-A-6 .,

Many other trajectories were studied with variations
in propellant utilization rate, kick angle, and payload. For com-
parison, some cases involving coast and restart were also examined.
The best of these indicates that a payload gain (by restart) of 86,000
1b is possible; however, additional weight required to realize restart

capability was not evaluated and would reduce the advantage.
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ITI, F, Vehicle Description (cont.)

Analyses of staging dynamics show that the relative
lateral motion between the first and second stages is sufficiently
small to preclude damaging contact or severe perturbations to the flight
path. Although the stages are aerodynamically unstable at the time
of staging, the dynamic pressure and angle of attack are low enough
to avoid appreciable rotation being developed before the longitudinal
separation has proceeded past its critical point. This is made possible
by the use of pressure-driven separation which results in a total stag-

ing time of approximately 3 sec.

The first stage unit is recoverable and reusable.
The recovery operation starts after staging with the inflation of a
drag device of flared shape that stabilizes the unit and reduces its
velocity for sea impact. A parametric study of re-entry and impact
conditions showed that an impact velocity of 300 ft/sec is required
by structural considerations of the first-stage tankage at its final
internal pressure of 100 psi. Analyses of various configurations for
drag effectiveness showed that a conical flare of 300-ft diameter is
required to achieve the impact velocity. An inflatable flare was
chosen after a trade-off study and comparison with parachutes and fixed

structures.
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I1I, F, Vehicle Analysis (cont.)

2. Vehicle Loads and Dynamics

a. Introduction

A wide variety of problems associated with
static and dynamic loads, vehicle kinematics and dynamics, and the
Sea Dragon environment have been investigated with differing degrees
of completeness. In many instances the findings of this preliminary
work have indicated that phenomena associated with the Sea Dragon
concept (large size, water environment, etc.) do not give rise to
insurmountable engineering problems with respect to present technology
and conservative estimates of future advances. For example launch
dispersion magnitudes and water re-entry loads can be readily handled.
In other areas it has been recognized that the problems are not yet
fully defined or that methods of solution are not readily available,
e.g., the acoustic environment and resulting vehicle response.
Another major result of this work, however, has been the identification
and definition of problems in the area of vehicle loads and dynamics
whichvwill require more attention in the next design phase of the

program.
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The more significant results of loads and dynamics studies conducted

to date are summarized in the following paragraphs.

b. Sea and Wind Environments

Wave lengths, heights, and periods were defined
as functions of sea state and wind velocity. The concept of ''sea
spectra' was used with particular attention being given to Sea State

No. 4,5,6,.

The upper atmosphere wind environment used in
analytical and design studies presented in this report is taken from
NASA TN 1274. A maximum wind velocity of approximately 320 ft/sec at
42,000 ft altitude is thereby specified in a 99% probability of occur-

rence profile.

c. Floating Loads

The most severe loading condition for the

vehicle floating in still water is the case where the propellant tanks
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IT, F, Vehicle Analysis (cont.)

are full and there is no ballast attached. A maximum bending moment
of 385 x lO6 ft 1b will exist in the interstage area under this
condition; however, this load is substantially less severe than that
experienced during vehicle erection and flight. Loads developed

during other floating modes and sea conditions are discussed below.

d. Towing Dynamics and Loads

6 and

Maximum bending moments of 230 x 10
390 x 106 ft 1b were calculated for the 'sagging' and "hogging”
conditions respectively. (Hogging refers to the condition in which
the vehicle is supported near the center by an ocean swell. Sagging
describes the condition in which each end of the vehicle is supported
by a wave crest.) No dynamic amplification of these loads is anti-

cipated because the vehicle bending modes are much higher in

frequency than are the significant frequencies in the sea spectra.
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To avoid difficulties in controlling the towed
vehicle with respect to yaw and roll in a cross-sea environment, anti-
rolling devices will be studied in future work. The problem of dynamic
interactions of the Sea Dragon vehicle, the towing cable, the towing
vessel, and the sea environment was examined and a preliminary method
of analysis was formulated, The solutions to these problems must

combine analysis and model testing, much of which remains to be done.

Propellant sloshing frequencies for the vehicle
in the towing mode were found to be in the range 0.208 to 0.722 cps
for the first three modes (tanks 90% full). These sloshing frequencies
could couple with wave forces when Sea State No. 5 conditions exist;
however, the extent of the effects of this coupling on the complete
towing configuration remains to be evaluated. It should be remembered
that the tanks will be completely full (except for the RP-1 tank which

has a 3% ullage) for most of the towing operations.
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e. Vehicle Erection Loads

The process of erecting the vehicle gives
rise to the largest bending moments experienced by the structure. A
maximum bending moment of 1.0 x 109 ft 1b is calculated for the case of
a 5.0 x 109 1b effective ballast weight. An internal gas pressure
of approximately 30 psi in the first-stage LO» tank and second-stage

LHp tank is required to react the erection bending moment.

f. Prefire Loads and Motions

Dynamic loads due to wave action calculated
for sea states up to and including Sea State No. 7 are found to be
relatively small. Heaving motion, however, becomes quite violent for
sea states above No. 5 because of strong coupling between sea spectra
and the vehicle heaving mode. There also appears to be a strong
possibility of encountering pitch-heave instability in Sea State No.
6. For this reason, it appears that launching will be restricted to

Sea State No. 5 or less, for which a maximum pitch amplitude of 0.17°

Page II-F-8



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

II, F, Vehicle Analysis (cont.)

and maximum heave excursion of 3.0 ft are calculated. This area also
requires additional study to determine if the same conditions exist
forother configurations and to investigate ameliorating devices such
as use of different ballast unit configuration to provide additional

damping.

Preliminary analysis showed that forces due to
wave induced vortex shedding will not be a problem for the Sea Dragon
vehicle. Atmospheric vortex shedding, however, may result in signif-
icant responses of the erected vehicle because of coupling with the
‘rigid body pitch mode. Calculations indicate an angular excursion in

pitch of 1.75°for a 25 ft/sec wind velocity.

Propellant sloshing loads are not expected to
be of importance during the prefire stage because of fullness of the
propellant tanks and frequency separation between sloshing modes and

other forcing and natural frequencies of the environment and vehicle.
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g. Launching Dynamics

"Launch dispersion! (motions of the vehicle
as it leaves the water) were calculated for several disturbing forces.
Wave forces in Sea States No. 5 and 6 result in maximum angular
deflections and rates of 4.55° and 2.419%/sec respectively. A thrust
misalignment angle of 0.25° was found to give rise to maximum dis-
persions of 1.56° displacement and 1.70°/sec rate. A 33-knot wind
gives rise to 5.77° displacement angular dispersion and 1.17°/sec
angular rate. The combined maximum dispersion displacement and rate
for all cases considered were calculated to be 5.82° and 2.41°/sec
respectively. It appears that the control system can handle these

dispersions if activated at the time the vehicle leaves the water.

The possibility of large loads being gener-
ated by propellant sloshing response during launch seems remote,
since only the higher sloshing modes (fifth and sixth) will couple

with the fundamental vehicle bending mode.
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The maximum bending moment experienced during
the underwater phase of launch (with the control system inactive) is
found to be 201.5 x 10° £t 1b, which is less than the maximum erection

load.
h, Flight Loads

The most significant flight bending load on
the Sea Dragon vehicle occurs at maximum dynamic pressure conditions
(@ = 1,600 1b/ft2, altitude = 34,600 ft). For this condition a wind-
induced angle of attack of 4° is found to give rise to a bending moment
of 120 x 10% ft 1b in the interstage area. The most severe flight
load occurs at first stage burnout, and first-stage tank pressures of
80 psi are required to react the 4.2g longitudinal acceleration, which
occurs at that time. Although larger decelerations occur at re-entry,
the resulting axial loads are smaller than those encountered for the
burnout condition noted above because of the much smaller mass during

atmospheric flight.
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II, F, Vehicle Analysis (cont.)

i. Impact Dynamic Loads

The response of the first stage structure
(including the fundamental longitudinal vibration mode) to impact
loads was calculated for impact velocities of 300 ft/sec and 600 ft/sec.
The relatively long rise time of force during the 300 ft/sec impact
condition results in very little dynamic amplification. However, the
rise time of the 600 ft/sec impact shock is sufficiently short to
cause 93% dynamic overshoot in the acceleration felt at the nose.
Figures II-F-1 and II-F-2 show impact accelerations and responses

for various velocities and conditions.

Analysis of the effects of impact shock on
the nose cone, cylindrical tanks, and the nozzle involves considerations
of dynamic buckling. Considerable testing and analytical effort should
be directed toward this area in future Sea Dragon studies. The response

of specific subsystems to impact loads also remains to be investigated.
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II, F, Vehicle Analysis (cont.)

On the basis of results of impact studies to
date, it appears that impact problems can be handled with presently
available technology. A balanced combination of nose cone geometry
and impact velocity (using the drag flare design) will result in a
practical first-stage structure. The problem of isolating sensitive

components is solvable with present packaging techniques.

J. Special Aeroelastic Effects

The problems of flutter of the first- and
second-stage nozzles and the possibility of encountering oscillatory
side loads during underwater operation were considered. Much further study in
these areas will be required to evaluate the flutter possibilities.
Oscillatory side loads arising out of flow separation in the nozzle
underwater can be controlied or prevented in part by proper design

and placement of the ballast plug and rings within the expansion cone.

Page II-F-13



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

IT, F, Vehicle Analysis (cont.)

k. Propellant Sloshing

Propellant sloshing frequencies have been
calculated for several first stage flight conditions. Fundamental
mode frequencies ranging from 0.266 to 0.631 cps were found. Since
only the higher modes will be excited by the launch transient,
sloshing at this time does not appear to be a problem. Later in the
flight, slosh frequencies combining with the control system frequencies
is possible; however, a judicious selection of slosh suppression devices
and control system damping and gain can be made to avoid the problem.
Additional work in these areas, guided by analog simulation of the

autopilot, is required.

1. Acoustics

A study of the Sea Dragon acoustic environment

and its effect on the vehicle was conducted. The principal sources of

acoustic environment were found to be: (1) generated by the first-stage

engine (185 db); (2) caused by the aerodynamic boundary layer (150 db);

Page II-F-14



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

II, F, Vehicle Analysis (cont.)

and (3) created by towing turbulence (155 db). The predominance of

low frequencies in the rocket motor noise spectrum will result in levels
of roughly 150 db at distances of 10 to 15 miles from the source for a
duration of one minute A summary of acoustic environments is given

in Table II-F-1 and Figure II-F-3.

Vibrational accelerations of 10 to 15g rms are

anticipated for the airframepanel vibration modes. High-damped materials

may be used to preclude intolerable panel responses.
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ITI SYSTEMS OPERATION

A. OPERATIONAL PROCEDURES

The operational life of the Sea Dragon covers four major
periods--transportation from the fabrication site, assembly of the vehi-
cle stages and checkout, propellant and vehicle servicing, and launch
site operations. An operational flow chart defining these functions
sequentially is shown in Figure I1I-A-1. The assembly, servicing and
launch operations will be in the vicinity of Cape Canaveral as shown in
Figure III-A-2 and III-A-3. The major operational categories are dis-

cussed below.

1. Transportation

The transportation of the Sea Dragon vehicle system
components from the fabrication activity will be done with conventional
ocean transport practice. Smaller parts, such as the vernier engines,
will be shipped by land or air transport. Larger components, such as
expandable nozzle sections will be shipped by barge and the major com-

ponents, such as the stages or the assembled vehicle, by ocean-going
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III, A, Operational Procedures (cont.)

tug towing the free-floating component. The free-floating barge tow
technique is in practice currently in the transoceanic transport of
tanker sections of the size of Sea Dragon and in barge operations along
the coast. As an example, two 4,20C metric ton tanker bodies, 366 ft
long, 80 ft in beam, 44 ft high with a 7-ft draft, were recently towed

from Japan to the United States for use in T-2 Tankers.

2. Assembly and Checkout

Final vehicle assembly and checkout operations will
take place in a specially dredged lagoon in the Cape Canaveral area
(Figure III-A-3 and III-A-4). Stage I, the Stage II and payload section,
and the ballast unit will be assembled here using a floating assembly
technique (Figure III-A-5 and III-A-6). The various components will be
kept under positive control with mooring cables and brought together
in the quiet waters of the assembly lagoon. Two major joints--from
ballast to Stage I and from Stage I to Stage I1I--will be made after

joining. Figure III-A-5 shows the cable rigging of the stages as they

are joined alongside the assembly dock.
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- All continuity functional checkouts and talibrations
will be performed in the assembly lagoon. Adequate access to the vehicle
along its entire length is ensured by the wharf and crane facilities.

The vehicle floats very high in the water at this time; rotation of the
vehicle provides access to the complete vehicle. Proper attention to

design will ensure access to transducers, lines, valves and other check
and service items. If necessary, the vehicles can be rolled through a

controlled number of degrees to allow access to normally submerged portions.

After all checkout operations have been satisfactorily
completed and the proper functioning of all systems established, hard
line and telemetry monitoring will be initiated. This monitoring will

function continuously through the launch operations.

3. Propellant Servicing
After proper system operation has been verified,  the

vehicle will be towed to the fueling point (Figure III-A-3). Fueling

the vehicle (LH2 and RP-1) first in this tankage design would be easier
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III, A, Operational Procedures (cont.)

under more controlled conditions, particularly for the LH2 handling.
Draft changes are nominal. Arguments, such as reduced LH_ boiloff and
better towing characteristics, might be made for loading LO2 first; how-
ever, a final decision will depend upon the vehicle design eventually
selected. After chilldown and fueling operations are completed, the
vehicle will be towed to Point Bravo (Figure III-A-2) where the LO2
loading barge is moored (Figure III-A-7). The vehicle will be kept under
close translational control by mooring lines during the L02 operations.

After LO2 tanking is completed, the vehicle will be towed to Point Able,

the launch point.

4. Launch Site Operations

Upon arrival at the launch site, final systems checks
are made and propellant tanks topped as necessary. With relatively small
amounts of insulation (1% of Stage I inert weight and 5% of Stage II
inert weight) it is possible to obtain a three-day operational period

between the time the LH2 tank is filled and the time when propellant
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III, A, Operational Procedures (cont.)

tank top off is required. This period is available because the propel-
lants are at saturated equilibrium at atmospheric pressure before loading
and are held under higher pressure in the vehicle tankage; therefore, some
time elapses before the propellants absorb sufficient heat to begin boil-
ing. There is a lower propellant density at the higher saturation pres-
sures. This has been considered in tankage design. After the propellants
reach saturation at the higher pressures, boiloff occurs at the rate of
1l to 2% per day for the LO2 and 5% per day for the LH2.
After propellant topping off is completed, the ballast
unit is gradually filled with high density ballast fluid to destroy its
buoyancy. This causes the vehicle to erect itself to the launch attitude.
The ballast unit weight varies with the tankage and vehicle configuration

chosen; for Configuration No. 134 it is in the order of 10 million 1b.
Test data and theoretical dynamic calculations show

that the vehicle should function efficiently in sea conditions up to

State 5 (wind velocity 20 to 25 knots, wave height 8 to 12 ft) to ensure
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at least a 95% operational capability. Under these conditions, the
vehicle is very stable-maximum pitch amplitude 0.17°, maximum heave
amplitude 3 ft. Launching from close offshore from Cape Canaveral
should allow dependable launch weather forecasting before the vehicle

departs from the fueling point.

Access to the vehicle is accomplished from the service
craft (Figure III-A-8) A small vertical service car, Figure III-A-9,
transported by the craft, rides on rails permanently affixed to the side
of the vehicle. Rails in each quadrant on the outside of the craft
permit access to most of the skin. The car can carry men and equipment
to any of the portions of the vehicle above water, including the command
module (Figure III-A-10). All rails may be used simultaneously when
four service crafts are employed (Figure II1I-A-11). Any final checkout

requirements and crew loading or debarking is done with the service car.

After the crew has boarded the vehicle and all systems
are ready, the service craft removes its trolley car from the rails and
will withdraw to a safe distance. Then the final countdown to vehicle

launch is begun.
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b

5. Launch Operations

The launch operations command ship that accompanied
the tug when the vehicle was towed to the launch site provides support
services to the service craft that are completing final launch activities.
It provides communication links to the Cape and to the vehicle. When the
Cape Control Center clears the launch, the command ship executes the
launch of the Sea Dragon. The ship can provide radar services and heli-
coptor services for special access to the vehicle area and to assure

that the general area is clear for launch.

0. Post Fire Recovery Operations

The ballast unit will be staged from the vehicle during
the underwater trajectory. It will sink initially and then it will be

recovered by inflating internal flotation bags.

The Stage I vehicle will land approximately 170 mi

downrange. It will be taken in tow by a tug standing by in the vicinity

and returned to the assembly lagoon for refurbishment.

Page III-A-7



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

#376q 9TOTYsA N - #3TUn uosuods Z
= 1SS 0TA208 T - 63n3 3upclves 3

8170q OTTESTH f = #3TUM
uosuods 7 - TEES6A €0TAISS T = BOUOUTA
¥ 830QoUs UT-POTTIP N - L3TTT00y O

8370q STOTYPA ] ~ sucsuods g
= TO886A SOTAIOS T = 3 Sutjodwes z
;e Y

8378q aToTYRA N}
- WeI0 [ - TESS) TOIIUO) Youns]
J0 UOTI¥IS W1 PUNGI) = [88S8A GOTAISE T

suosuods fj - juewdinbe SurTpuwy enpow
PUPIIOO = @TUR JOJEUVI) ISETTNQ 2

= 83pun quenBITe SITReIpAY 2T

= ZopTam oTqemojne T - s3uyTe eTssou ¥
- SOURIO 2 ~ €310Q SIOTYRA @

= BIOYOUS UP-POTTTIP § =~ BOYPOUTA @

sjueximbe JuTTPUEY STMPON P usmIag
*qussdnbe 3noxoeqo W/ STNPOH Puwmuo)

SIPARIPY UOTIN}USMRIISUT JUITLL
3umdyrbe Jnoxowid K/Y I e8w3g

SJIoydUe Uy POTTIIP
soyoum

SZPAPIBY UOTIRUMMIFIUT FBTLL
wemdmbe jnoxoey> K/g II ewyg

WIoqous UT POTTHP f
segouta f

sunIo Juyrpuey
ea31eq J0 Jwo TRRY

JOUTRUOD STNPON SOTAIE
sIoutwiuco sutiue §

o31eq pezenod T

) s37um uosuods g

#370Q ®7wryos 1 - Iny Bujcdwes |

T8 eoTysA
88 203 B e3pun um-MoMm. w
Suq Jutolees T

LT INST

#oLvEo

3IeyD MOT4 TeuoriexadQ

*oawg quTo{ 03
worw JuTTNy Y3 WOXy OTOTYEA paTony .10,

STONJ PEOT-TENSAA SOTAIOS 03 STOIFUKD
£37T1987 ORIV *SeuTT juea } TTHA Ty
YOIy *Jaeym BuipeoT 03 STOTYRA &INDeg

‘ware Jupreny
03 dY1s LYquessy ey3 woly eOTYeA MOl

*gedaey)
PnIea] pue 830300y edeory ‘yyy pwol

*TO888A TOIJUCO YOUN ¥ JO UOTP¥}8 WL punosd
PO TeSges 80TAZes 3uEn eOTYeA 83eTdwoo
oY} JO NONONYD PUR ‘9180, SWRRAS W

“BOOTAD V/S YITA sedawyd uoTy

~sredes TTe3SUl <@TNPON PuwuMId TTW}SUL
*eTzzou eTqupuwixe TTeISuUY °*seduls
STOTY®A Y3 JOo ATquesse puw SuTiew Teuyy

OTNPOK Pusuwo] Jo o/> § ATquesey

*1ea3 UOTIEITARU ¥ UOTIVFOTF eacwsy
‘UOTIRIUMMIISUT JUETLF TT®ISUT  *3Tuf
A99TTeg 7 I e8e3S Jo o/o % Lrquessy

*dyre L1quesse
UT 37Ul yseTTed % I e8wif uoriTsad

*Iwed uoTIR3TARU % UOTIWIOTF

eAcUSY ‘UOTIBIUMNIGSUT YITLF TTeIOUL
*quedynbe empou @ojAzes TTeISUI
*peoTied pur II e3e3S Jo ofo 7 Aesy

*dys L1quesse
uy peoTded pur II e8wqS uotyTsod

*saIw LIQuOeS® 07 STNPOK BOTAING
Pus OTNPON puwumwiod ey3 Jo uotiejzodeunal

*OT3%ON oTqepuedxy

% seupBus DAl jodsumil - TwIeAwuw) edep
3% were L1quesss 03 jutod GInjovFIURL WOXy
w030 ¥TA pyoTAed puw II #3wy§ Jo Sutnol

Tezeaswe) odw) 3¢ vexw L1quesse 0} jutod
AMIORTUINN WOXJ MeecO WIA T eSwag Jo Bummol

NOLId TSI

S30ui § @ efwp o

sj0uY § 9 edwp of

SIVQ N1 SWIL

cawxg qutod

oIy 0TAIOf Teng

TeIoATUR)
odwp 3¢ moo¥e1

TRISATUR)
odx) 39 noolel

TextATIRO)
ode) 3w uoodel

vary 1eny

vy Teng
uooSe] L1quassy

woxy ucoSeT

wexy uocole]

war/ uocodeT

< 9oy ucodeT

oy uccde]

woxy uoco¥e]

»oIy uooleT

woxy uooleT

Jutod uoty
~9dtxqey jusuocdwon

(3mwo0
3994) qutod uoTy
~9oTaqu4 jusuoducy

(39900

3sep) quiod uoyy
~®0TIqe4 jueucduag

Houd

R LISTO0T

TOIY OOTAIOS
X0T 03 3xodsuwry 1T

Yoy pwol hi1d

BOIY 90TAIOS
Ty 0y jxodsueay Tt
®WupI) PROT T

PR F 3801

Sunsig eTOTYOA *01
£1quessy

STOTYSA TwuTd 6
qnoxoaygy

STUPOH puwmmon -8
I8P
% I o3e3s - n0

=}oouo pue A1quessy -l
qyul 3eeTTeg ¥

T #8v4g uoTyT80d *9

peoTied 3 II e3m3s

~qnoyoey) puw Lesy *5
ProTAed prre

11 993§ uoryTeod -
PO

puenso) .fno&u:-hk €
peoThed 3

II edw3§ qrodeusa] T

I o3e3g 3rodsuwxyl he 4

HOLIONNA  SORIMES

Figure III-A-1



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

Sny Supofves T

geeq 3gon T - Bny Buycdves T

Tessea esTAIee T - LyTTI0R] pumexd
pue diqe feTex Jo Tswses TeIuX youns| T

Jeo e07AZes TEOTRIGA T =~ TeENEA €OTAIS {
- 3nq ButcSves T -
Tessea TOIJU® Younw| T

sionq
£10a0083 3SUTTEq » - 631wq s3I0y (MmTTYq T
« q80q XXoR T ~ Te6SGA GOTAXeS T
= 3nq Sutolves T -
1e898a TOJIZUG yYounel T

370 STATYPL N} « S3TUM uosuods 2
- Teeses 90TAJeS T - §3ny Jugoiees 2

$3T9q FTITYRA N
« guosuode Z - THSEGA SOTAIOS T - S@DUIA
7 s20UR UT-POTTIIP 9 - e3awd XOT

I-V-III daNOId

*sere .Ad!oa-N cy ney,
gorquo mey ysw3ay I eBwqg Paerocow| uoofeT ATquUossy

~zare Liquesss a3 ae] ~*sPeq Lieapoax
MUl  “sfenq yTUM 1MTTEq J0A003Y uoolde] LTquessy

youney mroyred “*ewers moxy sdyur T v
eacuey cjueudinbe 8ojAIeS TEOTIIEA SA0mEY

FOMP STOTHMA TOUTS WIOFIed °sSIequent
ASIO PROT "JEO GOTALSS TEOTIIGA PRIV 'S

+orquo fng
Supuorapsod YOwlaY “eTOTUEA jIex “sfenq
Lxea0oex 39 pLwq eexedeig “syfun uosuods

osseToy °*OTOTUSA JO JNONOSUD TEUTS WIOFI8 1
~eTqy utad
3% 978 YOUTNT OU3 03 STOTUGA POPROT A0l L oTqY Tl

0T PROT " *seutT oA ¥ TTH Y01
qow33y  *TeEses 8OTAXSR 0} §TOIIUCO e3req
0T yae3aV *sdaeq YOT 03 SOTYSA SIMOSE T

oIqv ured

oTay Jutod

oTqVY Juted

oTqY JuTad

CABIG: JUTAE

oawxg JuUTed

1 o8wqyg asacoey

A8wTTeg Ieacoey
UAOPAUNGD
Yyoune] WI0310d

Butotazeg
TeUTS WIOFIed

STOTUSA 08I0
pue AnoNdeuD

woxy youmeT
03 3odsuex]

101 peol

”

0z

6T

gt

Lt

9T

gt

(cont.)

Operational Flow Chart



45’

Report No, LRP 297, Volume 1
AEROJET-GENERAL CORPORATION

30
I
T

z
o

o
~

w
]

£

<

=

z

©

g -

120 FT

=

'PATRICK AIR FORCE BASE

"COCOA BEACH

POINT BRAVO

45
30
15’

600 FT .

MAUTICAL MILES

oA

Area Map

icing
Figure III-A-2

Serv



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

LEGEND

ASSEMBLY AND REFURBISH-
MENT WHARVES

HAZARDOUS STORAGE

GRAVING DOCK

SHOP AND WAREHOUSE
COMPONENT CHECKOUT
FUELING AREA

Assembly Lagoon--Plan View

Figure III-A-3




LRP 297, Volume 1

Report No.,

AEROJET-GENERAL CORPORATION

1dsouo) s3sT1ay--uocobHe] ATQUISSY










LRP 297, Volume 1

Report No.

Butpeo] 20T

-~~~ AEROJET-GENERAL CORPORATION

Figure III-A-7



Volume 1

LRP 297,

Report No.

AEROJET-GENERAL CORPORATION

Service Craft

Figure III-A-8



EEEEEEEEEEEEEEEEEEEEEEEEEE

/

SO/ /OR




Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

o

Figure III-A-10

Vertical Access Equipment



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

Vertical Servicing

Figure III-A-11



Report No. LRP 297, Volume 1

AEROCJET-GENERAL CORPORATION

I1II, System Operations (cont.)

B. SUPPORT EQUIPMENT AND FACILITIES
1. Facilities
a. Manufacturing

The major components of the vehicle, the
propellant tanks, the main engine and the ballast unit are within the
capacity of.existing shipyard dry docks or building ways. Tooling, jigs
and fixtures peculiar to the vehicle will be required; however machine
tool needs will depend‘upon the facility selected. Smaller components
such as the thrust vector control engines, the guidance system and the
command capsule would use existing aerospace facilities. Upgrading of
shipyard fabrication precision and inspection requirements will require
corresponding equipment. This general facilities situation indicates
that no problems are expected in obtaining suitable facilities and
that the costs should be substantially less then in similar programs.
The development techniques for jigs and fixtures for other large

structural programs are directly applicable to Sea Dragon.

The provisioning of mill and rolling facilities
for production of the thick basic tank plating is included in the

suppliers plate price.
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IIT, B, Support Equipmenf and Facilities (cont.)
b. Development

In the fabrication of both developmental and
operational vehicle componeﬁts, the same or similiar facilities will
be used; no unusual problems peculiar to developmental components is
evident. The developmental test equipment also would be fabricated in
the same facilities as the operational equipment for open ocean testing.
Special land based facilities will already exist under other NASA
projects for thése special land based tests. Supporting services for
the test program at sea (e.g., tugs,ibarges, etc.) are available
commercially or on a charter basis; and they could also be otained from

government reserve equipment stocks.
c. Qperational

New facilities will be required primarily to
establish a suitable sea operating bése at Cape Canaveral because none
now exist. The basic facility is an assembly lagoon located to the
north of the Cape well away from present launch installations (Figure
II—A—3). A channel will be dredged from deep water, through the
coastal land strip, and into the existiﬁg lagoon. The lagoon area

will be deepened and the dredged material will be used to wall in the
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III, B, Support Equipment and Facilities (cont.)

desired area. Supporting docks, supply and equipment buildings, cranes,
and instrumentation installations will be constructed. A fuel storage

and pumping facility will be established. Supporting utilities and access
roads will be needed. Although the propellant production facilities are
included in the price of the propellants, it may develop that the rate

of propellant use is sufficient to warrant the supplier to construct

production facilities nearby.

These total base facilities are very conventional
for ship operations, and costs are readily predictable. No block houses,
special fabrication facilities, special transport system or launch pads

are required as for land launched vehicles.

Other operational facilities will be needed
such as the oxidizer loading barge, the service vessel, and the vehicle
associated small equipment (e.g., floats, camels, anchor gear, buoys,
towing gear, and the trolley car). The vehicle ballast might also be
placed in this catagory. The remainder of the servicing equipment
needed would be conventional tugs, work boats, testing and checkout
instrumentation, and land based materials handling equipment. Some

high capacity fluid handling equipment will be needed for propellant
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III, B, Support Equipment and Facilities (cont.)

servicing and ballast filling. The degree of special equipment required

will depend upon the importance of high flow rate servicing.

2. EguiEment

The support equipment requirements fall into two .

general catagories:
a, Standard Equipment Components

Existing available instrumentation for inspection,
check out and services (e.g., pumping, communication, local auxiliary
power, tools, etc.) would be required and normally would be placed in
building installations, on trucks or trailers at the lagoon, or in
conventional boats, barges or tugs participating in the operation.
Cryogenic handling equipment would be conventional although the Sea
Dragon size could necessitate multiple units. Checking and control
panels would contain aggregates of common instruments, data handling

units, and recording equipment.
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III, B, Support Equipment and Facilities (cont.)
b. Special Equipment

The cryogenic tank capacities could be supplied
by multiplé existing tanks or larger custom units as the budget dictates.
Specially formed bumpers, floats, and towing bridles would be needed as
would special bridlgé and handling gear for the expandable nozzle
installation. Considerable use of portable nondestructive testing and
inspection equipﬁent would be expected in the examining of recovered
stages. Recovered stgge disassembly is nof planned thus precluding

special handling equipment.
c. Special Equipment Complexes

The special equipment complexes could be
considered as special ground support equipments; these are very limited

in number.

The lagoon checkout complex is actually nothing
more than a dockside adajacent to an equipment building. Cables and
vpiping lead to the vehicle that is being checked out alongside the dock.
The building equipment consists of'thevpreviously mentioned conventional

checkout ‘components.
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III, B, Support Equipment and Facilities (cont.)

The service vessel is a moderate size ship with
special installations. It is a very flexible, reliable vessel (80 to
100 ft long) and will accompany the rocket vehicle from the time it
leaves the assembly lagoon until shoxtly before launch. It controls
propellant servicing operations, acts to monitor all systems, and
provides some checkout and trouble shooting functions. 7The special
requirement which differgntiates this from conventional vessels (other
than the addition of rocket ground support equipment) is the necessity
for maintaining close translational control between the servicing
vessel and the rocket vehicle. The special access barge aids in this
operation by limiting direct service vessel contact with the launch

vehicle,

Should there be a desire to provide direct
launch site control of the launch operation and secondary services,
it is possible to adapt an existing available sea plane tender (AV-1)
to a rocket tender configuration with the capacity for communications,

limited tracking, command control (as provided in the land based block

house), and hotel services for a work and servicing crew Many other useful

support functions at the launch site, such as small boat services,
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III, B, Support Equipment and Facilities (cont.)

helicopter services and observation facilities for visiting dignitaries
may be provided. Such a rocket -tender would provide a largely self-
sufficient task force at the launch; however, the services are not

included in the budget for the study.
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C. STAGE RECOVERY AND REUSE

Booster recovery and reuse can play a very important role
in realizing the low payload delivery costs required for the establish-
ment of truly large scale space launch programs. Therefore, emphasis
nas been placed on developing a recovery concept for Sea Dragon that
is simple and reliable in operation and represents a low weight penalty

for the vehicle.

The size, weight, and, in part, the complexity of a vehicle
recovery system are functions of the allowable touchdown or impact
velocity. Conventional boosters require very soft landings because of
their basic structural design. The Sea Dragon, by virtue of its pres-
surized tanks, has considerably more structural strength than other
proposed vehicles. As a result it can, in general, withstand higher
impact velocities and associated load environments. Thus, the com-
plexity and weight of the Sea Dragon recovery system should be much

lower than other comparable systems.
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ITI, C, Stage Recovery and Reuse (cont.)

The ability of the Sea Dragon structure to withstand
higher impact velocities is a fortunate one because there is a
scale effect for very large boosters in general that places much
higher requirements on the recovery system. This size-scale effect
can be shown quite simply: for recovery methods, which depend on
aerodynamic deceleration to final velocity, the ratio of accessory
drag device diameter to the vehicle diameter can be expressed as

follows:

8W Cdv

D o 2. 2

v C v. D
da ! i v da

where/i is the atmospheric density, Vi is the impact velocity, Cd is
the drag coefficient, and the subscripts a and v refer to the acces-
sory device and the booster vehicle, respectively. For geometrically

similar bodies with comparable structural efficiencies, the diameter

ratio can be written as:
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III, C, Stage Recovery and Reuse (cont.)

thus, the drag diameter to body diameter ratio, for a fixed impact
velocity, increases as vehicle size increases. If the Sea Dragon used
conventional low pressure tanks with inherent lower structural
strength limited to an impact velocity of 20 to 30 ft/sec, the neces-
sary drag diameter (e.g., provided by a parachute) would be about

3,200 ft.

The Sea Dragon operation is based on the sea launch con-
cept, hence final vehicle recovery and retrieval can take place at
sea. Final deceleration of the expended booster can be caused by water
impact forces. Because the Sea Dragon booster vehicle can take advan-
tage of its increased strength in accepting higher impact velocities,
it is important to know qyantitatively, the water impact pressures and
decelerations. An analysis of the water entry load environment and
vehicle structural response was conducted. The following sections

summarize this analysis.
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1. Water Entry

a. Pressures and Deceleration During Water Entry

The pressure distribution over the conical nose
as a function of immersion depth is shown in Figure III-C-1. This
particular plot is based on an initial impact velocity of 600 ft/sec.
The plot may be used for any initial impact velocity by using the non-

dimensional pressure P' = where P is the actual static

P
3 [ w oro

pressure, (O w is the density of sea water and s/ , is the initial water
entry velocity. Consequently, the pressure can be scaled according

to the square of the initial impact velocity ratio. Thus, the max-
imum pressure for an initial velocity of 300 ft/sec is approximately
650 psia and occurs at the cone apex. Experimental pressure distri-
butions obtained with scale booster models at the Aerojet-General

water entry test facility indicates that this distribution is suitable
for initial estimates. Figure III-C-2 shows, for the cone immersion

portion of entry, the nondimensional depth of penetration, velocity,
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III, C, Stage Recovery and Reuse (cont.)

and deceleration versus nondimensional time. The immersion depth (1)
shown in Figure III-C-1 can be correlated to the proper time of
immersion (this is a critical factor in determining the structural
response of the cone to the pressure loads). Figure II-D-13 illus-
trates the deceleration-time history, during flow establishment over
the cone, for several initial entry velocities. Figure III-G-5 shows
the complete deceleration history during the entire water entry phase,

from initial penetration to maximum penetration.

b. Determination of Allowable Impact Velocities

(1) Propellant Tank Stresses

Using the deceleration-time data from
Figure II-D-13, a criterion for determining allowable impact velocity
was established: the structural response of the empty booster was
found to have a first mode longitudinal natural frequency at 30 cps
and a first mode bending frequency at 13 cps. Comparison of these

frequencies with the impact frequency of the water entry loading
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(Figure II-F-2 shows that no dynamic load amplification is probable

for impact velocities less than 500 ft/sec. A general criterion

using a dynamic load amplification factor of one can be established
that relates impact velocity with the internal tank pressure required
to react the associated water entry loads. This criterion is based on
the conservative assumption that the cylindrical tank wall cannot accept
any compressive stresses. Thus, the compressive stresses caused by the
maximum deceleration inertia loads can be equated to the longitudinal
tension stresses caused by internal pressure. Figure II-D-14 shows

the results of this calculation. The proper impact velocity for the
available internal pressure can be selected using this plot. For the
pressurization system used in this design the LO2 tank pressure at
burnout is approximately 100 psia which corresponds to an impact
velocity of 300 ft/sec in Figure II-D-14. The remaining vehicle
structure (nose cone and components) were based on this velocity and the

associated pressures and acceleration.
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(2) Conical Nose

(a) Stresses

The dynamic stresses in the conical
nose were analyzed using Figure III-C-1 and reducing the pressure for
an impact velocity of 300 ft/sec. Preliminary results show that the
stress levels in the tank wall during impact are below the materijial
yield value, except in an area near the cone apex.* Stresses at this
point may exceed the failure point and a reinforced apex may be
required. However, the extent of the area over which this condition
exists is small (approximately 10 ft) and the weight penalty is

negligible.

¥ It was also shown that membrane stresses, rather
than bending stresses are predominant.
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III, C, Stage Recovery and Reuse (cont.)
(b)  Stability

Experimental results show that
material failure is not the design criteria for nose cones such as used
on Sea Dragon but rather that geometric or buckling instaﬁility is the
mode of failure (as might be expected). While complete mathematical
analysis of the buckling problem has not been completed, it has been
shown by a simplified analysis that some stiffening will be required
to stabilize the cone under the transient pressure loading. However,
the weight penalty due to installing circumferential T-type stiffeners
is very small, 4% of total cone shell weight and approximately 0.4% of
the first stage inert weight. For stability purposes, it was found
that approximately ten stiffener rings were required, spaced equally
between a point approximately 6 3 ft from the apex and the cone base.
The stiffeners were of thickness t, equal to the shell skin thickness,

a depth of 10 t, and u flange width of 5 t.
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III, C, Stage Recovery and Reuse (cont.)

(c) Vehicle Components

A major factor in the structural
integrity of vehicle subassemblies ,is the amplification of the input
acceleration pulse by vehicle resonances. For subassemblies whose
mass is small relative to the vehicle, the input is more easily described
as an acceleration pulsge at the base of the attachment structure. This
acceleration is a function of the amplification in the longitudinal
mode and the location of the tie-down structure in the mode-shape.
Components and subassemblies that are highly sensitive to these loads
will be located as close to the nodal point of this mode as possible.
Preliminary study of the subassembly attachments‘fnder a 22g decelera-
tion pulse shows that stiffened and strengthened structure would be
required which would impose a weight penalty of 2.0% of booster inert
weight. Consideration of the thrust chamber dynamic interaction with
gimbal joint and tankage indicates that structural stiffening of the
gimbal joint would be required. The weight penalty because of the
required increased structural strenéth is approximately 0.5% of booster

inert weight.
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2. Selection of the Aerodynamic Deceleration Device

Three basic recovery systems were selected for study:
inflatable aerodynamic decelerator; large nozzle flare; and parachute.
All of the systems studied, with the exception of the large nozzle
flare, were required to yield impact velocities of 300 ft/sec, the
allowable velocity based on available tank pressure for structural
stability (Figure II-D-14). 1In each case the same basic recovery
operation was followed: the first stage of the vehicle continues
after burnout along its ballistic trajectory, re-enters the atmosphere
and impacts the ocean surface at terminal velocity. Each recovery
system examined was required to provide proper aerodynamic stabilization
and drag for the given impact conditions. The aerodynamic decelerator
was chosen as the most promising system on the basis of overall reli-

ability, weight, and performance.
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a. Parachutes

Recovery of the Sea Dragon first-stage booster
with a single parachute requires a parachute diameter of 2,700 ft to
attain the required impact velocity. Such a complete recovery system
weight, including a 45-ft drogue parachute for main chute deployment
would be approximately 0.7% of the total recovered weight. Supersonic
deployment, at Mach No. 1.8 to 2.0 of the drogue chute deployment was
assumed. Use of several smaller chutes was considered; however, the
total weight of a clustered system was approximately the same as a
single chute system. Deployment reliability of a clustered system

appears to be lower than for a single chute.

Even though the parachute system appeared very
favorable from a weight standpoint, some important disadvantages were
found in initial atmospheric entry and deployment: the Sea Dragon
booster, without accessory devices, has poor aerodynamic stability and

at best is neutrally stable. Thus with a tumbling re-entry, as could
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be the case because of the staging tipoff torques, the problem of
reliable parachute deployment is a serious one. The prediction of
tumbling rates during re-entry is very difficult. Whether or not
stable equilibrium at some angle of attack is reached before impact
also poses an involved analysis program. Attitude and rate sensors
must be utilized in the booster so that parachute ejection and deploy-
ment can be sequenced properly. If low-drag fin stabilization devices
are used to provide sufficient stability for a stable flight path, the
rapid descent of the booster allows insufficient time for parachute
deployment, for with a stabilized (with fin) descent, a Mach No. of 1.8
is reached 105 sec after initial entry, and impact occurs at 113 seconds.
Deployment at higher velocities to obtain a longer dgployment interval
presents severe problems in parachute stability and deployment (ref
NASA TN D752). Therefore, based on overall ease of operation and

reliability, the parachute was not considered practicable.
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b. Large Nozzle Flare

A recovery system with the highest reliability
possible, would be possible when almost complete péssive operation
is used. One configuration that provides this feature is the basic
Sea Dragon first stage using a very large area ratio engine nozzle.
The function of the 1ar%e nozzle is to provide re-entry stabilization
and drag forces that would give the proper velocity and attitude at
impact. For this particular system, the exit diameter required for
water entry velocity of 300 ft/sec was impractically large from a
structural and thrust coefficient standpoint, so a modification of the
pressurization system was made to provide a cone tank pressure of
400 psi. An impact velocity of 600 ft/sec corresponds to 400 psi in
Figure II-D-14. A nozzle diameter of 175 feet is required (for a
20° half angle conical nozzle) to obtain 600 ft/sec impact velocity.
The payload penalty associated with the additional drag losses during
ascent, increased nozzle weight, additional structure in the components,

specific impulse loss due to over-expansion, and increased outage gas
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weight was approximately 18%. This payload penalty and the additional
fabrication and other associated problems over-shadow the high re-

covery reliability available with this system.

c. Inflatable Aerodynamic Deceleration

An inflatable aerodynamic decelerator that
incorporates a high degree of reliability with reasonable weights and
deployment simplicity and provides the necessary drag and stability
during atmospheric entry could combine the best features of the systems
discussed previously. Basically, it is an inflatable conical flare
attached to the thrust chamber of the booster (Figure III-C-3). The
base diameter of the flare required to provide an impact velocity of
300 ft/sec is 300 ft. The flare consists of a large, 30-ft diameter
torus made rigid with smaller inflatable tubes (spokes) 10 ft in
diameter. The torus and supporting tubes are constructed of rubberized
nylon-dacron reinforced fabric and are protected from the thermal

environment by the outer skin. The outer skin is an ablating rubberized
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asbestos fabric that is replaced for each flight. The outer skin is
kept in tension and reacts the air loads (design aerodynamic external

pressure was 5 psia) by the reaction of the tubes on the torus structure.

The flare structure is inflated to a maximum
of 30 psia with methane pressurant gas from the first-stage fuel tank.
The volume of the torus and tubes is such that the fuel tank retains

sufficient pressure to react the water impact loads.

The conical flare provides low terminal velocity
and high aerodynamic stability, yet presents no drag penalty during
ascent. The weight of the complete system is approximately 3.8% of
the total recovered stage weight. The basic vehicle can withstand the
impact loads without additional stiffening, however, some stiffening
will be required in the component attachments and the gimbal joint,
which is charged to the recovery system and is approximately 2.5% of
the stage inert weight. The total recovery weight is approximately 6.3% of

stage dry weight. This lower penalty compared favorably with other system
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weights (10% of inert weight and higher) because structural design of
the Sea Dragon will accept higher impact velocites. This recovery
system will have a payload penalty (for a 30-nm orbital mission) of
2.5%. The important advantage of using a vehicle with strength that
allows higher impact velocites is readily apparent. The use of a pres-
sure fed fuel system eliminates the need of carrying separate flare
inflation gas where the tank pressurant gas required for the propulsion

phase is available for flare inflation.

(1) Operational Sequence

(a) Flare Deployment

The staging sequence occurs upon

attainment of first-stage burnout conditions, and the expended booster

coasts upward along its ballistic trajectory. Immediately after staging

the forward extended skirt of the interstage structure is detached and

the outer fabric cover of the cone flare containing the deflated flare
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structure is ejected. When the dynamic pressure has decreased to a
value of 10 lb/ft2 (17 sec after staging), inflation of the flare
structure begins. Methane gas from the fuel tank is passed through

a pressure regulating valve into the flare. The flare structure is
fully inflated, to a pressure of 1 psi, in approximately 100 sec. At
this time, the vehicle has reached its apogee (335,000 ft). Pres-
surization of the flare continues, and at approximately 200 sec from
inflation initiation, the flare is pressurized to its design value of
30 psia. At this time, the altitude is 182,000 ft, the trajectory
flight path angle is 33° below the local horizontal, the velocity is

5,450 ft/sec and the dynamic pressure is 15 lb/ft2.
(b) Atmospheric Entry
Atmospheric entry of the Sea
Dragon booster stage '"effectively' occurs at an altitude of 200,000 ft

at a velocity of 5,350 ft/sec, and a flight path angle of 30° below

the local horizontal. Tumbling of. the vehicle, caused by the initial
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tip-off forces at staging will begin to affect the vehicle trajectory
at this pcint; however, due to the high aerodynamic stability and
damping be the flare configuration, the tumbling motion will subside
rapidly and the vehicle will attain a stable flight path at or
approximately at a zero angle of attack. The flare structure is not
fully pressurized to its design pressure of 30 psia until the vehicle
reaches an altitude of 182,000 ft. The flare, however, is fully in-
flated at all times during entry, and the internal pressure at all

times substantially exceeds the external flow field static pressures.

During the subsequent descent
trajectory, the following maximum conditions are experienced by the
vehicle. The maximum stagnation radiation equilibrium temperature
(on the 7 ft diameéter blunt nose cap)'is 1,3900F. Temperatures on the
flare structure, assuming no ablative materials, should not exceed
900°F. 1If an ablative outer skin is used, temperatures within the
flare on the torus and tubes will be in the order of 2SQOF maximum.
The maximum dynamic pressure is 300 lb/ft2 and the maximum deceleration

is 6.5g.
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(c) Impact Conditions

An impact velocity of 300 ft/sec
and a flight path angle of 89O from the horizontal are the terminal
conditions for the atmospheric trajectory described above (Figure II- C-2).
Oscillatory motions of the booster are damped out and, for a still air
condition, the water entry angle of attack is zero at impact. The
effect of surface winds ;n the splash area could produce an angle of
attack of possibly 6O for a 30 ft/sec surface wind; however, slow

response of booster to such drift effects, should result in an angle

of attack no greater than 39,

3. Second-Stage Recovery

Recovery and reuse of the second stage can offer
economic advantages. The general method for recovery of the first
stage could be applied to second-stage recovery. A conical nose would

be incorporated in the second stage.
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The second-stage auxiliary engines provide orbital
injection thrust for the payload, and the second stage will go into
orbit with the payload. During ascent into orbit and after the second-
stage main engine has ceased firing, the expandable nozzle skirt will
be separated and ejected from the stage. After attaining orbital con-
dition, the payload and expended second stage will be separated. When
the second stage has reached the desired position, small retro rockets
in the nose will be fired to eject the vehicle out of orbit. A veloc-
ity impulse of 480 ft/sec will be required to give an initial re-entry

angle of 2.5° from the local horizontal.

Aerodynamic stabilization and deceleration of the
stage will be attained with an inflatable flare similar to the one used
for first stage recovery. The size of the flare will be smaller than
the flare used on first stage. The available tank pressure is lower,

50 psi, however, the reccvered weight is also lower, 1.2 x 106

1b.
This 50 psi tank pressure, available for axial load reactions,corre-

sponds to a terminal velocity of 210 ft/sec for which a flare diameter

of 240 ft is required.
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Aerodynamic heating for second stage recovery will
be more severe than for first stage. Use of flare material with
higher thermal resistance, such as Rene 41 mesh and ablative coatings,

will be necessary.

4. First-Stage Recovery

The first-stage vehicle will carry redundant radio
beacons that will be activated prior to launch to facilitate in-flight
tracking and post-flight recovery. As the stage re-enters the atmos-
phere, radar trackers at Cape Canaveral will predict the approximate
water impact point (which will be about 170 mi downrange from the point

of launch) and advise the recovery tugs by radio links.

Several seagoing tugs of the 3500 hp class equipped
with radio-direction finders will be stationed in a'circular array at
a safe distance from the predicted point of water entry. As the stage
approaches and then enters the water, the tugs will home on the stage's

radio beacons, assisted by the radar tracking information.
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After the stage impacts the water surface, it will
slowly settle into a shallow-draft, near-horizontal attitude, with its

tail buoyed up by the inflated flare.

Following venting of the stage tanks by the tug to a
safe structural stabilizing pressure that will vary depending on any
stage damage, and the partial deflation of the flare, a harness will be
attached to the interstage structure for towing the stage back to the
assembly lagoon. No attempt will be made to add ballast to the stage,
but a suitable tow attitude will be achieved through controlled

deflation of the flare.

Navigation lights and monitoring lines between tug
and stage will be installed. During the towing period% the towing
vessel and accompanying tugs will monitor and remotely control stage
attitude, tank and line pressures, and structural strains. Tow will be

performed at 5 k.

On entering the assembly lagoon, handling of the
recovered stage will be similar to that for a new first stage being

delivered from the factory. Stage controls will be transferred from
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tow vessel to the facility and the stage will be correctly positioned in
the refurbishment area. For safety reasons, ordnance or other dangerous
items will be the first to be inspected ‘and, if necessary, deactivated
prior to any refurbishment processing. Among these are the vehicle
destruct system, the triethylaluminum ignition system, and residual

.propellants.

5. Expected Recovery Damage

It is expected that recovered first stage will not
have experienced damage beyond those items of a sacrificial nature that
must necessarily be replaced prior to re-use of the stage. The general
simplicity and ruggedness of stage design and the low stress levels to
which étage and recovery components will be subjected are believed to
warrant this expectation. For example, internal pressurization of the
propellant tanks enable thHe structure to withstand very severe water
impact loads; the inflatable flare is subjected to only 5 psia pressures
and 1,000°F temperatures during the atmospheric re-entry trajectory;
because the stage is brought to a stop during water entry within 45% of
its length, the inflatable flare will not be subjected to severe water
forces; the flare torus will experience temperatures of only 250°F

during re-entry.
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6. Refurbishment

Refurbishment of the first-stage assembly will not
require tank supporting devices because the tank structure will support
itself in the unpressurized condition. In the event that tanks must
remain pressurized to prevent sea water admission, access to pressurized

compartments can be attained through the use of portable air locks.

Because the Sea Dragon vehicle is built to be
compatible with salt water, any damage caused by sea water will be
held to a minimum. The major repair requirements to refurbish the stage

and ready it for further use will be:

a, Repairs or replacement of '""one-shot'" valves
b. Repair or replacement of paint, insulation,
and ablative material

c. Replacement of the interstage structure

The disconnects on the service interconnection will
need replacement because of the position of Stage I during the staging
sequence, It is anticipated that plumbing and electrical units in the

area of the Stage II thrust chamber exhaust will suffer extensive damage
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at staging and thus require complete replacement. Sea water will be
removed from the injector and other areas that have become contaminated.
A reconditioned inflatable flare will be exchanged for the ablated
flare recovered with the vehicle, and the used flare will be returned

to the factory for installation of a new ablating outer skin.

All refurbishment will be accomplished while the
stage is in a floating condition; therefore, complicated and expensive

fixtures will not be required.

After complete inspection, replacement of expended
or damaged components, and re-inspection, the recovered stage will
re-enter the prelaunch assembly process and be mated with a new

second stage and ballast unit preparatory to being launched.

Repetition of the cycle will depend upon the launch
and recovery reliability achieved. Reliabilities presently attained by
pressure-fed rockets indicate that a single Sea Dragon stage will operate

for more than ten cycles and could approach 100 cycles.
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D. DEVELOPMENT PROGRAM

1. Introduction

The Sea Dragon development program is estimated to
require 68 months and $2.8 billion for its completion. The develop-
ment program includes extensive surface-based testing of all vehicle
and supporting subsystems and will culminate in ten developmental
flights of the complefe flight article. Special emphasis is given
to the development of personnel and procedures as well as hardware

(in recognition of their importance to system integrity).

The development plan is designed to be both
economical and effective by exploiting the unique characteristics of
the Sea Dragon concept. The simplicity and ruggedness of Sea Dragon
‘design, the proposed use of the sea as the primary transporta%ion
medium and testing site, and the use of existing shipyards for
vehicle fabrication all combine to permit a development program of
short duration and low cost,kconsidering the very large size of the

vehicle.
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In addition to the ten flight articles 'intended for

launch, the development plan provides for the following:

a. One complete flight-weight, two-stage vehicle

to be used for dynamic tests on the surface,

b. Four complete first-stage vehicles (three

cruiser-weight and one flight-weight) for system static tests at sea.

c. Four complete second-stage vehicles (three-

cruiser-weight and one flight-weight) for system static tests on land.

The test programs proposed for these and other major

developmental test articles are summarized in the remainder of this

section.
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2. First-Stage Propulsion Development

Development of first-stage propulsion will begin
with a series of tests of candidate injector elements (representing
a portion of the .full-scale injector) in modified Titan I engine
chambers, with scale-model Sea Dragon gimbals. Tests will be con-

ducted in air and underwater to simulate the operational environment.

Next, six wedge chambers, each a 22° longitudinal
pie-shape section of the full-scale engine, will be tested at NASA's

Mississippi test facility.

Finally, the four complete first-stage vehicles
previously described will be used in full-scale system tests at sea,
with a floating ballast-deflector unit provided for this purpose.
(Figure III D-1). (Testing at sea is emphasized in the development
program to permit the early discovery and solution of operational

problems associated with the sea-launch concept and to simplify the
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test stand requirements as compared to conventional land based vehicles.)
A total of some 10,000 sec of engine firing will be accomplished, and
an estimated 105,000 man-months will be consumed in this phase of the

development.

3. Second-Stage Thrust Vector Control and Main Propulsion

Development

Development of the four 53,000-1b thrust auxiliary
engines will be along conventional lines, depending heavily on the
large body of experience already gained by Aerojet-General and others

with hydrogen-oxygen engines of a similar size.

A boiler-plate engine chamber will be used for in-

jector development tests.

Tube-bundle chambers, constructed with swivelling

attachments in accordance with the proposed operational design will be

tested first in air at sea-level, then under water, and at altitude
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(in the Tullahoma facility or an equivalent facility). Approximately
13,000 sec of engine firing will be included, and 34,000 man-months

of effort will be expended in this phase.

Generally, development of' the second-stage main
engine will follow the pattern of that for the first-stage engine, with
some departures occasioned by the use of the expandable nozzle and
the need for conducting preflight starting tests under altitude con-

ditions.

Injector element tests in modified Titan engines,
and full-scale second-stage vehicle static tests at NASA's Mississippi

Test Facility are included.

As a follow-on to current Aerojet-General tests of
expandable nozzles at Tullahoma using Titan chambers, the proposed
Sea Dragon development plan provides for larger-scale expandable nozzles

to be similarly tested in the Tullahoma altitude facility, using M-1
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engine chambers. The capacity of the new J-4 test cell at Tullahoma

will be adequate for these tests.

The second-stage main engine tests (including

associated runs of the four auxiliary engines) will accumulate 93,000

sec of firing time, and will use 108,000 man-months of effort.

4. Development of Other Subsystems

It is proposed that a guidance system for Sea Dragon
be provided by adapting an existing guidance system, such as that for

Saturn, to Sea Dragon use,.

A series of small 30-in diameter rocket vehicles will
undergo the simulated Sea Dragon operational sequence, including launch
and recovery, to help anticipate possible problems in later full-scale

operations.
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Other phases of the surface-testing program include
tests of vehicle insulation, combined environment tests of vehicle
subsystems, pseudo-operational surface tests with full-scale vehicle,
vibration and acoustic tests, staging system tests, recovery system
tests, wind tunnel tests, and tests of materials, transportation
equipment, manufacturing techniques, assembly and fueling equipment,

launch support equipment, and tracking and range safety equipment.

5. Flight Tests

The development program will culminate in 10 flights
of the full-scale vehigle including recovery and}refurbishment of the
first stage (Figure III—DF2). The flight program is generally designed
to emphasize surface operations and first-stage functions in early
flights; second-stage functions and first-stage recovery in middle-

term flights, and successful delivery of the spacecraft into orbit

in the later flights.
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6. Statistical Summary

The total estimated cost of development is $2.836
billion, including $0.3 billion for contingencies and spares. The
program includes 116,000 sec of engine static firings (before flight)
and the constant labor of an average of 13,800 personnel. The develop-
ment will use.$256 million in materials and $406 million in propellants.
First-stage propulsion development (before flight) is estimated at

$515 million including facilities.

Page 1II1-D-8



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

First Stage Static Test at Sea

Figure III-D-1



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

LEGEND' — ——— DESIGN — — —— FABRICATION

TEST

YEARS AFTER GO—-AHEAD ] | 2 3 4

SYSTEM DESIGN e et —————

FIRST STAGE PROPULSION

INJECTOR T

WEDGE CHAMBER T T A T

-——— v a— e — — ——

FULL SCALE =

SECOND STAGE PROPULSION

TVC ENGINES Enhadani—— Al A

MAIN ENGINE INJECTOR e

| SCALE EXPANDABLE NOZZLE [T = === ——

FULL SCALE ———— e e ————

VEHICLE INSULATION

GUIDANCE SYSTEM —_—— e e —

| COMBINED ENVIRONMENT TESTS

SMALL MODEL SYSTEM ———

FULL SCALE SURFACE‘ TESTS - =T/

OPERATIONAL SEQUENCE

VIBRATION AND ACOUSTIC

STAGING SYSTEM

FIRST STAGE STATIC DEFLECTOR T o — —

CONTROL SHIP EQUIPMENT —_————d

WATER ENTRY BODY MODELS - =

WIND TUNNEL MODELS -

MATERIALS T —

MANUFACTURING SYSTEM —_—

TRANSPORTATION SYSTEM —

SEA OPERATIONS SYSTEM

LAUNCH SUPPORT EQUIPMENT _———1T -

TRACKING & RANGE SAFETY —_——y—— ==

FLIGHT TEST:

FAB FIRST STAGE —

FAB SECOND STAGE L

ASSEMBLY & CHECKOUT

LAUNCH

Figure III D-2



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

III, System Operations (cont.)

E. FABRICATION PROGRAM

1. Introduction

The size of the Sea Dragon, the waterborne environ-
ment, and the objective to use existing facilities whenever feasible,
inherently lead to the strong consideration of shipyards as the
potential manufacturing site. The United States shipyards-are not
extensively involved in the space effort, therefore there would be
little competition existing between the Sea Dragon program and other
space programs for the use of existing facilities. Selection of
existing shipyards as the manufacturing site would simplify not only
the facilities problem but the transportation prob{em as well. A
study of the United States shipyard facilities indicated that existing
shipyards are adequately equipped with the majority of the required
facilities; they have access to the sea that would aid in resolving

transportation problems; andthey have extensive experience in
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handling, rigging, and building large vehicles in excess of the Sea
Dragon's requirements. It is thought that using these facilities and
experience in combination with aerospace industry techniques and "know-
how'" will result in an organization quite capable of efficiently meet-

ing the program objectives.

Fabrication, assembly, and production testing of
fhe four major hardware end items comprising a complete Sea Dragon
vehicle (first stage, second stage, payload, and the ballast unit)
could utilize shipyard facilities in the San Francisco Bay area. After
stage assembly, as shown in FigureIII-E-1, each stage would be towed

to the vehicle assembly point in the lagoon at Cape Canaveral.

To establish the feasibility of fabricating these
four major hardware end items, a degree of engineering judgment was
used. Critical components of hardware were selected for detailed
study. It was thought that the extrapolation of these findings would

establish Sea Dragon feasibility at the level possible in this study.
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Because the first—stage engine had a larger thrust
requirement than the second-stage engine, the first-stage engine was
selected. Past experience indicated that the thrust chamber assembly
of liquid rocket engines was normally the pacing hardware item in
fabrication. On this basis, the first-stage engine thrust chamber
assembly fabrication technique was designated as critical. The extra-
polation of this study would establish the feasibility of building the

Sea Dragon first- and second-stage engines.

The apparent large percentage of fabrication cost
represented by the Sea Dragon tankage indicated that the fabrication
techniques necessary to build at least one of these tanks should be
documented. Because the cryogenic property requirements were the most
stringent in the second-stage hydrogen tank, this item was initially
selected. The designation of 2014 T6 aluminum as the basic material

consideration revised this selection. The thick wall sections in the
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first-stage fuel tank, which resulted from selection of this material,
presented larger fabrication problems that those of the second-stage
tankage. On this basis, the first-stage fuel tank (RP-1) was selected

as a critical hardware item.

Attached to the second-stage thrust chamber is an
expandable nozzle that presents a unique fabrication problem because
of its size, thinness of material, and the requirement for tapered
convolutions. Because of these unique characteristics, the expandable

nozzle was also designated a critical hardware item.

Sufficiently detailed fabrication techniques were
outlined for those critical items selected to permit an idea of costs,
determination of facility, tooling, quality control, testing, lead
time, and support requirements. This level of analysis also permitted
the determination of whether thé critical items of the Sea Dragon

were exceeding the existing state of the art.
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2. Fabrication and Assembly Plan

Because the use of a completely expendable vehicle
pPlaces a greater burden on the manufacturing operation, (more S;

vehicles must be built) this version was selected for detailed study.

In the consideration of fabrication and assembly
techniques to be utilized in a shipyard, side or end launched ways and
drydocks were considered for fabricating the stages in a horizontal

position and drydocks or basins were considered for vertical fabrication.

A fabrication facility utilizing side launched ways
is shown in Figure III-E-2. The first-stage thrust chamber assembly
is partially completed. The injector plate is on the ways awaiting
assembly. The first-stage tankage has just been completed and awaits

assembly. Farther down the way~the second stage is shown in a
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partially completed state. To take advantage of existing facilities
and minimize shore requirements, drydocks would be utilized for
assembly rather than the side launched ways protrayed. (See Figure

III-E-3 for manufacturing operations in a drydock.)

The ballast unit shown in Figure III-E-1 is a
recoverable item. Therefore, fewer of these units would be made than
complete vehicles (for fhe expendable configuration). As scheduling
requirements dictate, the ballast units would be fabricated in the San
Francisco shipyard and attached to a first stage for towing to the

main assembly lagoon at Cape Canaveral.

The payload minus the command capsule would be
delivered by sea to the San Francisco shipyard assembly point and
assembled to the second stage prior to towing to the assembly lagoon

at the Cape.
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The second stage would be assembled in the same
manner as the first stage with the exception of the ballast unit and

the interstage structure.

The assembly techniques shown are all well withing
the existing capabilities of known shipyards on both the east and west
coasts. Potential problems in misalignment between the first and
second stage and second stage to payload can be handled by an adequate

master tooling program.

a. Fabrication and Assembly of the First- and
Second-Stage Engines

The manufacturing procedure is similar for

both the Stage I and Stage II Sea Dragon engines.

A tube-wall type thrust chamber was selected
for the DeLaval nozzle. The tubes would be delivered to the assembly
point by a boxcar in a partially assembled state. The tube segment

would be lifted from the boxcar by a crane and placed on a preformed
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concrete support. The final tube connection would then be made and the
tube assembly leak and pressure tested. The tube assembly would then
be lifted onto a rotating mandrel as originally portrayed in Figure III-
E-2. After tack welding the tubes in position, the mandrels would be
removed and the tubes would be brazed by a quartz lamp process (see

Figure III-E-4).

The injector would be assembled off-line in a
vertical position similar to the fabrication of a ships bulkhead.
Upon completion of the injector, it would be rotated into position with
the combustion chamber and welded. This would be followed by assembly

of the LO, and fuel lines to the manifold assembly, the gimbal support,

2

mounting, and actuator.

b. Fabrication and Assembly of the First- and
Second-Stage Tankage

The manufacturing concept is the same for
both Stage I and II of the Sea Dragon tankage. The use of roll-

and-weld or press-and weld technique is well understood and applicable

to the requirements in the development of the large diameter vessels
in this project.
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Two different modes of assembly have been
considered in the fabrication of the tankage. The selected mode
utilizes a horizontal assembly technique similar to the shipyard

fabrication of a submarine in a drydock or on a building way.

The first-stage fuel tank (RP-1) would be

fabricated of 2014 T6 aluminum in a shipyard in the following manner.

(1) Fabrication

The mold loft would develop plate
sizes, using reduced scale optical lofting, and produte templates
required for roll and jig sets. Optical layout of plates, cutting to
size, and roll and press forming to correct shapes would be done in

the fabrication shop.
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(2) Subassembly

The material would then move to the platen
area and onto the subassembly jigs located there. Sized and formed
plates would have their joining edges prepared for welding and then be
welded into units of 3 to 5 plates. The RP-1 aluminum plates would
have been prepared for welding by compound portable edge milling
machines mounted in a gibbed carriage traveling laterally on a machined

track.

Inspection of welds by quality control

prescribed methods would then be made.

(3) Maximum Assembly

The subassemblies would be transported
to the area at the head of the shipways and erected into maximum
weight, head or cylindrical units on semipermanent jigs. When sub-
assemblies have been welded together, the welds will be inspected by

quality control prescribed method.
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When ready for removal to the shipways, the
portable feature of the jig will de disconnected and the completed
cylinder or head section will be lifted into its position on the ways

with the shoring intact.

(4) Final Assembly

Final joining of all of the units making up
the first-stage fuel tank will follow. Additional internal shoring
will be added. Weld inspection will be done on the final welds as
previously described. Testing of the tanks to the extent that will
be developed by requirements of Aerojet-General and the shipyard's
quality control will then be performed. Final cleaning, addition of
protective coatings, and installation of internal insulation will be

done.

The welding of 2014 aluminum in 8 in. thick

plates exceeds the present state of the art. A preliminary material

study was performed to determine the theoretical possibilities of
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III, E, Fabrication Program (cont.)

performing this welding. A possible technique has been determined but
it would require considerable developmental effort. Because of this
and attendant recent advances in other materials, 18% Ni maraging steel
was selected for the Sy RP-1 tank. The fabrication procedure outlined
is applicable to either materials with one exception; the maraging

steel welds would require heat treatment by strip heaters.

(5) Alternate Approach-Vertical Assembly

The alternate plan, a vertical assembly
technique, utilizes a drydock or basin that can be. flooded. Figure III-
E-5 shows the vertical assembly technique. Preliminary estimates
indicate that the vertical method of tank assembly costs three to four
times more than the horizontal method of tank assembly. This informa-
_tion is on the basis of preliminary cost estimates received from

shipyards that are considering both modes of fabrication.
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I1I, E, Fabrication Program (cont.)

c. Fabrication of the Second-Stage Expandable
Nozzle

The second-stage expandable nozzle is to be
fabricated from stainless steel, type 310 or 321. The sheet will range
in thickness from 0.120 in. at the upper end to 0.020 in. at the
nozzle exit.. In the finished condition ready for delivery to the
operational personnel, the nozzle segment is % of a 75 ft dia circle,
approximately 118 ft long and covered with a protective layer of

styrofoam.

Material of the proper varying thickness will
come from the mill preformed in rolls, or delivered ;s sheet, formed,
welded, and coiled on rolls at the fabrication site. The sheet metal
rolls are mounted so that the material feeds out through a series of
rubber rollers to a mechanical welder that welds the sheets together
before they go through the explosive forming tool. The operating

speed of the welders is controlled by a pilot control devise mounted

in or on the rubber feed rollers.
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III, E, Fabrication Program (cont.)

The explosive forming technique proposed is
similar to the outline presented in the interim report on a cooled
thrust chamber design using high-energy forming by William J. D. Escher
for NASA (MTIP-P and VE-P-62-7). One half of the cooling tube bundle
discussed in this report would be sufficient for the expandable nozzle

application.

An alternate method is as follows:

Each forming die operates individually in
sequence, one through seven. The dies operating in this manner draw
the material and fold it without stretching it. After all the dies have
functioned, the dies retrack and the folded material passes through the
degreaser. The degreaser sprays a solvent over the material to remove
any oil film left by the previous operation. The solvent used is com-
patible with the foam; therefore, rinsing is not necessary. Foam is

then sprayed into each convolution. (See Figure III-E-6.)
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I1I, E, Fabrication Program (cont.)

3. Quality Control Plan

Quality control requirements for this vehicle are
formulated somewhere between the aerospace and shipbuilding industry

practices.

The standard techniques of quality control in the
fields of inspection, material control, process control, gaging, and
nondestructive testing will be applied. Experience from the aerospace
and shipbuilding industries is applicable. In many cases, quality
control problems will actually be less severe because of the simplicity,
accessibility, and large size of the components with corresponding
increases in tolerances and dimensioning. For instance, in the field
of nondestructive testing, the increased size will permit better
accessibility for radiographic work. It is estimated that over ninety-
eight per cent of the welds on the project can be handled with single
wall radiography. This will also simplify the inspection of castings
for areas like the aluminum rib section. Portable X-ray equipment

and radioactive isotopes will be required.
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III, E, Fabrication Program(cont.)

Much of the dimensional work will be checked with
optical equipment. Techniques from aerospace work will be utilized
and refinements of these techniques will be required for this vehicle.
Optical gaging points will be a necessary part of all faBrication and
tooling, both for tooling checkout and for in-process inspection and
acceptance of components. Contamination control, which has been a
problem in present missile construction, will continue to be a problem
with the larger components, and new techniques, both for control and
inspection, will be required. The determination of those levels of
contamination that are hazardous, will require re-assessment, because
the size of the various propellant orifices will be‘considerably
increased. This could well reduce the difficulties.in this area,
although special attention by quality control will always be required
when liquid oxygen is being used and the hydrocarbon hazard is present.
Another problem may be encountered in association with the brazing.of
the thrust chamber assembly tubeé. Portable brazing techniques will
require approaches for the maintenance of atmospheric control, dew-

point cbntrols, and brazing component controls. Although this vehicle
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111, E, Fabrication Program (cont.)

system will create a family of new requirements for the quality control

specialists, it does not pose any problems that are not well within the

capabilities of the present aerospace industry to resolve.

4, Conclusions

The study indicates the following: A feasible

but not necessarily an optimum manufacturing approach has been selected.

If it is assumed that the results obtained in the
investigation of the critical items described can be extrapolated, the
Sea Dragon is within the existing state of the art w%th the exception
of the fabrication techniques required for the thick sections of
aluminum in the first-stage fuel tank. The use of aluminum or of
maraging steel as is now recommended, will require additional develop-

mental effort before this tank could be built.
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111, E, Fabrication Program (cont.)

Current shipyard facilities, tooling, and '"know-how"
exist that could build a Sea Dragon today, providing quality control

and additional material evaluations are performed.

Fabrication tolerances that are required for the Sea
Dragon are closer than normal shipbuilding practice but considerably
less rigid than missile practices in the aerospace industry. This
should result in much lower fabrication costs than would normally be

realized in the aerospace industry.
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Figure III-E-2
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Iv. PROGRAM COSTS

Once it has been determined that a particular launch vehicle can
transport a specified payload into a specified space location, the effec-
tiveness of that launch vehicle as compared to other competitive vehicles
is resolved into two basic comparisons: (1) the chronological availability
of the vehicle; and (2) the total vehicle system cost effectiveness.
However, for future national space transportation planning, cost effec-

tiveness has received major emphasis.

The cost effectiveness of the Sea Dragon system described has been
studied on an arbitrary operational life and launch rate. No optimization
of life and launch rate for the Sea Dragon has been attempted. A ten
year operational life is assumed; two different launch rates are used:

(1) 120 launches and (2) 240 launches in the 1O-year operational period.

The criterion of cost effectiveness adopted for the analysis is
specific transportation cost, or cost per pound of payload successfully
delivered into earth orbit (following Koelle's convention). The values

of cost effectiveness are presented to indicate the variation of cost

Page IV-1



Report No. LRP 297, Volume 1

AEROJET-GENERAL CORPORATION

IV, Program Costs (cont.)

effectiveness with operational years, optimism of performance assumptions,

launch rate, recovery or nonrecovery of the first stage, and the use of

direct costs only or total costs (direct plus indirect) in the calculations

Direct operating costs are taken to include:

V (vehicle production cost)

!

(propellant cost)
T (vehicle transportation cost)

L (vehicle launch cost), and

M (vehicle maintenance and repair cost, for
recoverable configuration only)

Indirect operating costs include:

~

(range cost and general overhead)
' G (surface-support equipment cost)
F (launch facility cost), and
D (system development cost)

i A 90% learning curve is utilized throughout the analysis.
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1V, Program Costs, (cont.)

To illustrate the effects of optimism or pessimism on the determi-
nation of specific transportation cost for Sea Dragon, the primary values
resulting from the cost analysis (which are considered to be realistic)
are designated the '"most probable'" values. Cost parameter values which
are considered to }epresent the limits of reasonable optimism and pessi-
mism regarding the primary values are so labelled (Figure IV-5). It is
“highly unlikely that, in the final analysis, the cost effectiveness of
Sea Dragon will be found to lie outside this range which is indicated by

the cross-hatched area in the figures.

To cover the combinations of the above programing elements that

are of interest, eight programing cases are considered:

10-yr .Average

Case Description Delivery Cost ($/1b)
I 120 launches, pessimistic parameter values,recoverable 31.70
II 120 launches, optimistic parameter values, recoverable 10.20

I1I 120 launches, most probable parameter values,recoverable 18.30

v 240 launches, pessimistic parameter values, recoverable 28.60
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IV, Program Cost, (cont.)
10-yr. Average
Case Description Delivery Cost ($/1b)
Y 240 launches, optimistic parameter values, recoverable 8.90
VI 240 launches, most probable parameter values,recoverable 16.20

VII 120 launches, most probable parameter values, expendable 32.80

"VIII 240 launches, most probable parameter values, expendable 27.90

Values of each of the elements of direct and indirect costs are
derived and applied to each of the above programing cases. The results

are shown in Table IV-1.

Figures IV-1 through IV-4 show the plots of the results of the
cost analysis, broken down by operational years. The 1l0-yr average
values of E and O/W from the preceding table appear as circles on the

curves in each case.

Summarz

The cost analysis indicates that specific payload transportation

costs (based on direct costs) of $10 to $20 per 1b can be attained using
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IV, Program Cost, (cont.)

the Sea Dragon system. If total costs (direct and indirect) are charged,
the specific transportation costs correspondingly increase to S20 to $30
per 1lb. From these results, it appears that Sea Dragon clearly offers
substantial economy, in the transport of heavy space payloads.

}

Program changes that result in cost changes from those elements of
cost used to establish the tables and curves of the previous figures can
be evaluated by using Figure IV-5. In this figure, the parametric values
of Case VI are used as a basis. The individual curves show the effect,
on $/1b of payload, of independently varying the values of each cost
parameter from 20% to 200% of its basic value (100%), while maintaining
the other parameters at their 100% values. For example, if the cost of
development (D) is raised to 200% of its basic value, the specific trans-
portation cost for the Sea Dragon system is raised 40% to a new value

of $40.50/1b.
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V. FUTURE INVESTIGATIVE PROGRAMS

While the study conducted has been sufficiently complete to
indicate technical feasibility and the strong possibility of high cost
effectiveness for the Sea Dragon concept, there are a number of areas

where further exploratory work is needed before any definitive decision

on the future of the concept can be made. These are as follows:
A. STUDY AND ANALYSIS
1. One of the initial tasks of the study and analysis

phase will be to remove minor discrepancies that exist in the present

report.

2. Study of Alternate Configurations to Explore
Possible More Optimum Features

Two or three alternate configurations should be
studied and preliminary designs developed sufficient to determine
technical feasibility and comparisons. These alternate designs

should include the best combinations of the following features:
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V, A, Study and Analysis (cont.)

a. Second stage recovery and reuse
b. Nonregenerative H2 engine cooling
c. Flexible intertank bulkheads and GH, pressuriza-

tion systems

d. LH2 and LO2 first stage

e. Other engine designs such as plug nozzle,
forced deflection nozzle and ventilated DeLaval
nozzles

f. Other thrust vector controls for the first
stage such as fluid injection, separate control

motors, and differential throttling.

3. Expanded Cost Analysis

The cost data obtained to date are most encouraging.
Data obtained from outside sources have been :cmpered with rather large

safety factors. Refinement of costing should improve the confidence

in the results.
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V, A, Study and Analysis (cont.)

3. Develop Preliminary PERT Program Networks

Reduction of the development and the operational
program to the details of a PERT network will materially assist in
determining the critical elements and provide the framework for later

PERT-cost analysis and definite program planning.

4. Develop the Supporting Equipment Requirements Details

a. Establish an instrumentation detailed plan and
data acquisition plan for checkout, launch,
and flight operations

b. Study alternate techniques for transportation
of stages, assembly of the vehicle, loading and
launching, and recovery and refurbishment

c. Study support requirements for launch operations
in other ocean areas remote from the Atlantic
Missile Range

d. Expand the recovery, refurbishment and reuse

details.
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V, Future Investigative Programs (cont.)

B. ANALYTICAL AND EXPERIMENTAL WORK

1. Examine the range of conditions to be encountered in
underwater starting to assure that starting transients present no

unsolvable difficu;ties

2. Determine what limitations might be expected in
engine free-floating developmental test rigs such as agitation of the

water or other unforeseen effects
3. Examine and test materials, fabricating and testing
techniques for very large high strength tanks to identify and solve

associated problems

4, Identify and solve currently unforeseen problems

associated with the water operational mode.
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V, B, Analytical and Experimental Work (cont.)

5. Determine the optimum recovery configuration, striking

the best balance between aerodynamic and water drag.

C.

FULL SCALE TESTS

If after the above investigations, no essential changes in

the results of this study are indicated, fabrication and test of a full

scale propulsion system with supporting subscale testing should be

initiated.
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